https://www.selleckchem.com/products/tas-102.html Photodynamic therapy (PDT) is a promising tumor therapy which utilizes reactive oxygen species (ROSs) to cause tumor cells death. 5-aminolevulinic acid (ALA) and two of its esters are FDA-approved photosensitizers. However, their clinical application suffers from their instability and lack of tumor selectivity. In addition, the overexpression of glutathione (GSH) in some tumor cells reduces the PDT efficiency due to the ROS-scavenging ability of GSH. In this work, we present three multifunctional ALA derivates with the characteristics of dual-targeting and GSH depletion to improve the therapeutic effect of ALA-based PDT. The general structure of these compounds consists of an ALA methyl ester (ALA-OMe) moiety that can metabolize to photosensitive protoporphyin IX (PpIX) inside the cells, a biotin group for targeting biotin receptor-positive tumor cells and a disulfide bond-based self-immolative linker which can be activated by GSH to liberate ALA-OMe. Simultaneously, the reaction between the disulfide bond angher tumor-specificity and better therapeutic effects.Acoustically-responsive scaffolds (ARSs), which are fibrin hydrogels containing monodispersed perfluorocarbon (PFC) emulsions, respond to ultrasound in an on-demand, spatiotemporally-controlled manner via a mechanism termed acoustic droplet vaporization (ADV). Previously, ADV has been used to control the release of bioactive payloads from ARSs to stimulate regenerative processes. In this study, we used classical nucleation theory (CNT) to predict the nucleation pressure in emulsions of different PFC cores as well as the corresponding condensation pressure of the ADV-generated bubbles. According to CNT, the threshold bubble radii above which ADV-generated bubbles remain stable against condensation were 0.4 µm and 5.2 µm for perfluoropentane (PFP) and perfluorohexane (PFH) bubbles, respectively, while ADV-generated bubbles of any size in perfluorooctane (PFO) co