The other 12 signs had a pooled sensitivity ranging from 21% to 79% and a pooled specificity ranging from 19% to 81%. Omentum involvement (cake-like pattern) showed a threshold-effect, so only the AUC (=0.70) was calculated. CONCLUSIONS Smooth peritoneal thickening shows fairly good diagnostic accuracy, while omentum rim/line, lymph nodes necrosis or calcification, mesenteric macro nodules have good specificity but limited sensitivity. The informative features summarised in this study may aid clinical practice and future studies. Malignant pleural mesothelioma (MPM) is a primary malignancy of the pleura and is associated with a poor outcome. The symptoms and signs of malignant mesothelioma present late in the natural history of the disease and are non-specific, making the diagnosis challenging and imaging key. In 2018, the British Thoracic Society (BTS) updated the guideline on diagnosis, staging, and follow-up of patients with MPM. These recommendations are discussed in this review of the current literature on imaging of MPM. It is estimated MPM will continue to cause serious morbidity and mortality in the UK late into the 21st century, and internationally, people continue to be exposed to asbestos. We aim to update the reader on current and future imaging strategies, which could aid early diagnosis of pleural malignancy and provide an update on staging and assessment of tumour response. Crown All rights reserved.Reversible double water in oil in water (W/O/W) emulsions were developed to contain subsurface hydrocarbon spills during their remediation using surfactant flushing. https://www.selleckchem.com/products/frax597.html Double emulsions were prepared by emulsifying CaCl2 solutions in canola oil, and subsequently by emulsifying the W/O emulsions in aqueous sodium alginate solutions. The formation of double emulsions was confirmed with confocal and optical microscopy. The double emulsions reversed and gelled when mixed with the surfactants sodium dodecyl sulfate (SDS) and cocamidopropyl betaine (CPB). Gels can act as 'emulsion locks' to prevent spreading of the hydrocarbon plume from the areas treated with surfactant flushing, as shown in sand column tests. Shear rheology was used to quantify the viscoelastic moduli increase (gelation) upon mixing the double emulsion with SDS and CPB. SDS was more effective than CPB in gelling the double emulsions. CPB and SDS could adsorb at the interface between water and model hydrocarbons (toluene and motor oil), lowering the interfacial tension and rigidifying the interface (as shown with a Langmuir trough). Bottle tests and optical microscopy showed that SDS and CPB produced W/O and O/W emulsions, with either toluene or motor oil and water. The emulsification of motor oil and toluene in water with SDS and CPB facilitated their flow through sand columns and their recovery. Toluene recovery from sand columns was quantitated using Gas-Chromatography Mass-Spectroscopy (GC-MS). The data show that SDS and CPB can be used both for surfactant flushing and to trigger the gelation of 'emulsion locks'. Ethanol also gelled the emulsions at 100 mL/L. V.A novel insight on the role of interactions between target pollutants and the catalyst in the copper-containing layered double oxide (LDO)-catalyzed persulfate (PS) system was elucidated in the present study. 4-Chlorophenol (4-CP), as a representative benzene derivative with a hydroxyl group, was completely removed within 5 min, which was much faster than the reaction of monochlorobenzene (MCB) without a hydroxyl group, with the degradation efficiency of 31.7% in 240 min. Through the use of radical quenching and surface inhibition experiments, it could be concluded that the interaction between 4-CP and CuMgFe-LDO, rather than free radicals, played a key role in the decomposition of 4-CP, while only the free radicals participated in the MCB degradation process. According to electron paramagnetic resonance and X-ray photoelectron spectroscopy data, the formation of a Cu(II)-complex between phenolic hydroxyl groups and surface Cu(II) was primarily responsible for the degradation of phenolic compounds, in which PS accepted one electron from the complex and generated sulfate radicals and chelated radical cations. The chelated radical cations transferred one electron to Cu(II) followed by Cu(I) generation and pollutant degradation successively. V.Granular acid-activated neutralized red mud (AaN-RM) has been successfully prepared with good chemical stability and physical strength. However, its potential for industrial application remains unknown. Therefore, the performance of granular AaN-RM for phosphate recovery in a fixed-bed column was investigated. The results demonstrated that the phosphate adsorption performance of granular AaN-RM in a fixed-bed column was affected by various operational parameters, such as the bed depth, flow rate, initial solution pH and initial phosphate concentration. With the optimal empty-bed contact time (EBCT) of 24.27 min, the number of processed bed volumes and the phosphate adsorption capacity reached 496.95 and 84.80 mg/g, respectively. Then, the saturated fixed-bed column could be effectively regenerated with a 0.5 mol/L HCl solution. The desorption efficiency remained as high as 83.45% with a low weight loss of 3.57% in the fifth regeneration cycle. In addition, breakthrough curve modelling showed that a 5-9-1 feed-forward artificial neural network (ANN) could be effectively applied for the optimization of the fixed-bed adsorption system; the coefficient of determination (R2) and the root mean square error (RMSE) evaluated on the validation-testing data were 0.9987 and 0.0183, respectively. Therefore, granular AaN-RM fixed-bed adsorption exhibits promising potential for phosphate removal and recovery from polluted water. V.Chemical oxidation was applied to an artificially contaminated soil with naphthalene (NAP). Evaluation of NAP distribution and mass reduction in soil, water and air phases was carried out through mass balance. Evaluation of NAP distribution and mass reduction in soil, water and air phases was carried out through mass balance. The importance of the air phase analysis was emphasized by demonstrating how NAP behaves in a sealed system over a 4 hr reaction period. Design of Experiments method was applied to the following variables sodium persulfate concentration [SP], ferrous sulfate concentration [FeSO4], and pH. The system operated with a prefixed solid to liquid ratio of 12. The following conditions resulted in optimum NAP removal [SP] = 18.37 g/L, [FeSO4] = 4.25 g/L and pH = 3.00. At the end of the 4 hr reaction, 62% of NAP was degraded. In the soil phase, the chemical oxidation reduced the NAP concentration thus achieving levels which comply with Brazilian and USA environmental legislations. Besides the NAP partitioning view, the monitoring of each phase allowed the variabilities assessment over the process, refining the knowledge of mass reduction.