https://www.selleckchem.com/products/fingolimod.html In this study, banana peel (BP) and its derivatives after sequential extraction of biochemical components were evaluated for selective recovery of gold. In-depth instrumental characterizations including XPS, FTIR, XRD and HR-TEM were performed to understand the adsorption mechanisms. The biomass after lipid extraction, BP-L, demonstrated very good affinity and selectivity towards gold. In multi-metal systems containing 100 mg/L of Pt(IV), Au(III), Pd(II), Zn(II), Co(II), Ni(II) and Li(I), the selectivity coefficient increased from 978.45 in BP to 2034.70 in BP-L. Moreover, the equilibrium gold uptake was improved and reached 475.48 ± 3.08 mg/g owing to reduction-coupled adsorption mechanisms. The BP-L also showed improved gold nanoparticle formation properties that were pH-dependent. In a strategic adsorption-combined incineration process, metallic gold reaching 99.96% in purity was obtained. The BP and its derivative, BP-L have thus shown potentials for multiple applications in the areas of precious metal recovery and nanoscience.Torrefaction integrated with pelletization has gained increasingly interest as it enhances the characteristics of fuel pellets (e.g. hydrophobicity and energy density). In current study, torrefaction of furfural residue pellets (FRPs) and sawdust pellets (SPs) was performed by employing tubular reactor furnace, and quality of pellets was compared. The characteristics of both types of pellets were significantly improved with increasing torrefaction temperature from 200 °C to 300 °C and residence time from 15 min to 30 min. The highest lower heating value of 23.78 MJ/kg and energy density ratio (1.27) for torrefied furfural residue pellets (TFRPs) and 26.76 MJ/kg and 1.46 for torrefied sawdust pellets (TSPs) were achieved at 300 °C and 120 min. Increasing torrefaction temperature and residence time, the volumetric energy densities of TFRPs increased from 25.69 (at 200 °C and 15 min) to 27.