Acquired resistance to LY2606368 resulted in limited cross-resistance to other CHK1i. LY2606368-resistant cells still abrogated DNA damage-induced S phase arrest, which requires low CDK2 activity, whereas inappropriately high CDK2 activity is responsible for sensitivity to CHK1i alone. All three CHK1i inhibited protein synthesis in a sensitive cell line correlating with cell death, whereas resistant cells failed to inhibit protein synthesis and underwent transient cytostasis. LY2606368 appears to be the most selective CHK1i, suggesting that further clinical development of this drug is warranted.P-Glycoprotein is a well-known drug transporter associated with chemotherapy resistance in a number of cancers, but its role in modulating proteasome inhibitor efficacy in multiple myeloma is not well understood. The second-generation proteasome inhibitor carfilzomib is thought to be a substrate of P-glycoprotein whose efficacy may correlate with P-glycoprotein activity; however, research concerning the first-in-class proteasome inhibitor bortezomib is inconsistent. We show that while P-glycoprotein gene expression increases with the disease stages leading to multiple myeloma it does not affect the survival of newly diagnosed patients treated with bortezomib. Moreover, RNA-seq on LP-1 cells demonstrated minimal basal P-glycoprotein expression which did not increase after exposure to bortezomib or carfilzomib. Only one (KMS-18) of nine multiple myeloma cell lines expressed P-glycoprotein, including RPMI-8226 cells that are resistant to bortezomib or carfilzomib. We hypothesized that by inhibiting P-glycoprotein multiple myeloma cell sensitivity to proteasome inhibitors would increase; however, the sensitivity of multiple myeloma cells lines to proteasome inhibition was not enhanced by the specific P-glycoprotein inhibitor tariquidar. In addition, targeting glucosylceramide synthase with eliglustat did not inhibit P-glycoprotein activity nor improve proteasome inhibitor efficacy except at a high concentration. To confirm these negative findings, tariquidar did not substantially increase the cytotoxicity of bortezomib or carfilzomib in P-glycoprotein-expressing K562/ADM cells. We conclude the following P-glycoprotein expression may not correlate with the survival of newly diagnosed multiple myeloma patients treated with proteasome inhibitors. P-glycoprotein is poorly expressed in many multiple myeloma cell lines, and its inhibition does not appreciably enhance the efficacy of proteasome inhibitors.Oncogenic mutations in the KRAS gene are well-established drivers of cancer. While the recently developed KRASG12C inhibitors offer a targeted KRAS therapy and have shown success in the clinic, KRASG12C represents only 11% of all KRAS mutations. Current therapeutic approaches for all other KRAS mutations are both indirect and nonmutant-selective, largely focusing on inhibition of downstream KRAS effectors such as MAP kinases. Inhibition of KRAS downstream signaling results in a system-wide down-modulation of the respective targets, raising concerns about systemic cell toxicity. Here, we describe a custom short interfering RNA oligonucleotide (EFTX-D1) designed to preferentially bind mRNA of the most commonly occurring KRAS missense mutations in codons 12 and 13. We determined that EFTX-D1 preferentially reduced the mutant KRAS sequence versus wild-type at the levels of both transcription and translation and reversed oncogenic KRAS-induced morphologic and growth transformation. Furthermore, EFTX-D1 significantly impaired the proliferation of several KRAS mutant cancer cell lines in 2-D as well as 3-D assays. Taken together, our data indicate a novel use of RNA interference to target oncogenic KRAS-driven cancers specifically.Triple-negative breast cancer (TNBC) has limited treatment options and the worst prognosis among all types of breast cancer. We describe two prodrugs, namely, CWB-20145 (1) and its methyl analogue FAN-NM-CH3 (2) that reduced the size of TNBC-derived tumors. The DNA cross-linking of nitrogen mustard prodrugs 1 and 2 was superior to that of chlorambucil and melphalan once activated in the presence of H2O2. The cellular toxicity of 1 and 2 was demonstrated in seven human cancer cell lines. The TNBC cell line MDA-MB-468 was particularly sensitive toward 1 and 2. Compound 2 was 10 times more cytotoxic than chlorambucil and 16 times more active than melphalan. An evaluation of the gene expression demonstrated an upregulation of the tumor suppressor genes p53 and p21 supporting a transcriptional mechanism of a reduced tumor growth. Pharmacokinetic studies with 1 showed a rapid conversion of the prodrug. The introduction of a methyl group generated 2 with an increased half-life. An in vivo toxicity study in mice demonstrated that both prodrugs were less toxic than chlorambucil. Compounds 1 and 2 reduced tumor growth with an inhibition rate of more than 90% in athymic nude mice xenografted with MDA-MB-468 cells. Together, the in vivo investigations demonstrated that treatment with 1 and 2 suppressed tumor growth without affecting normal tissues in mice. These phenylboronic acid nitrogen mustard prodrugs represent promising drug candidates for the treatment of TNBC. https://www.selleckchem.com/ However, the mechanisms underlying their superior in vivo activity and selectivity as well as the correlation between H2O2 level and in vivo efficacy are not yet fully understood.DNA methylation has a major role in cancer, and its inhibitors are used therapeutically. DNA methylation depends on methyl group flux through the transmethylation pathway, which forms adenosine. We hypothesized that an adenosine kinase isoform with nuclear expression (ADK-L) determines global DNA methylation in cancer cells. We quantified ADK-L expression (Western Blot) and global DNA methylation as percent 5-methyldeoxycytidine (5mdC, LC-MS/MS) in three cancer lines (HeLa, HepG2, and U373). ADK-L expression and global DNA methylation correlated positively with the highest levels in HeLa cells compared to U373 and HepG2 cells. To determine whether ADK increases global DNA methylation and to validate its potential therapeutics, we treated HeLa cells with potent ADK inhibitors MRS4203 and MRS4380 (IC50 88 and 140 nM, respectively). Both nucleosides, but not a structurally related poor ADK inhibitor, significantly reduced global DNA methylation in HeLa cells in a concentration-dependent manner. Thus, ADK-L is a potential target for the therapeutic manipulation of DNA methylation levels in cancer.