Alternative splicing (AS) presents a key posttranscriptional regulatory mechanism associated with numerous physiological processes. However, little is known about its role in skeletal muscle atrophy. In this study, we used a rat model of denervated skeletal muscle atrophy and performed RNA-sequencing to analyze transcriptome profiling of tibialis anterior muscle at multiple time points following denervation. We found that AS is a novel mechanism involving muscle atrophy, which is independent changes at the transcript level. Bioinformatics analysis further revealed that AS transitions are associated with the appearance of the atrophic phenotype. Moreover, we found that the inclusion of multiple highly conserved exons of Obscn markedly increased at 3 days after denervation. In addition, we confirmed that this newly transcript inhibited C2C12 cell proliferation and exacerbated myotube atrophy. Finally, our study revealed that a large number of RNA-binding proteins were upregulated when the atrophy phenotype appeared. Our data emphasize the importance of AS in this process. There is little evidence to guide the timing of delivery of women with early-onset severe preeclampsia. We hypothesize that immediate delivery is not inferior for neonatal outcome but reduces maternal complications compared with temporizing management. This Dutch multicenter open-label randomized clinical trial investigated non-inferiority for neonatal outcome of temporizing management as compared with immediate delivery (TOTEM NTR2986) in women between 27 and 33 weeks of gestation admitted for early-onset severe preeclampsia with or without HELLP syndrome. In participants allocated to receive immediate delivery, either induction of labor or cesarean section was initiated at least 48hours after admission. Primary outcomes were adverse perinatal outcome, defined as a composite of severe respiratory distress syndrome, bronchopulmonary dysplasia, culture proven sepsis, intraventricular hemorrhage grade 3 or worse, periventricular leukomalacia grade 2 or worse, necrotizing enterocolitis stage 2 or worse, aid not result in other outcomes. Early termination of the trial precluded any conclusions for the main outcomes. We observed that temporizing management resulted in a modest prolongation of pregnancy without changes in perinatal and maternal outcome. Conducting a randomized study for this important research question did not prove feasible. Early termination of the trial precluded any conclusions for the main outcomes. We observed that temporizing management resulted in a modest prolongation of pregnancy without changes in perinatal and maternal outcome. Conducting a randomized study for this important research question did not prove feasible.Brain-derived neurotropic factor (BDNF), which is secreted by mesenchymal stem cells (MSCs), protects against severe intraventricular hemorrhage (IVH)-induced brain injuries. Although the paracrine protective effects of MSCs are mediated primarily by extracellular vesicles (EVs), the therapeutic efficacy of MSC-derived EVs and the role of the BDNF in the EVs have not been studied. This study aimed to determine whether MSC-derived EVs attenuate severe IVH-induced brain injuries, and if so, whether this protection is mediated by BDNF transfer. We compared the therapeutic efficacy of MSCs, MSC-derived EVs with or without BDNF knockdown, and fibroblast-derived EVs in vitro in rat cortical neuronal cells challenged with thrombin and in vivo in newborn rats by injecting 200 μL of blood at postnatal day (P) 4 and transplanting 1 × 105 MSCs or 20 μg of EVs at P6. The MSCs and MSC-derived EVs, but not the EVs derived from BDNF-knockdown MSCs or fibroblasts, significantly attenuated in vitro thrombin-induced neuronal cell death and in vivo severe IVH-induced brain injuries such as increased neuronal cell death, astrogliosis, and inflammatory responses; reduced myelin basic protein and neurogenesis; led to progression of posthemorrhagic hydrocephalus; and impaired behavioral test performance. Our data indicate that MSC-derived EVs are as effective as parental MSCs in attenuating severe IVH-induced brain injuries, and this neuroprotection is primarily mediated by BDNF transfer via EVs.The neurotoxic impact of dietary exposure to aflatoxin B1 (AFB1 ) is documented in experimental and epidemiological studies. Gallic acid (GA) is a triphenolic phytochemical with potent anticancer, anti-inflammatory, and antioxidant activities. There is a knowledge gap on the influence of GA on AFB1 -induced neurotoxicity. This study probed the influence of GA on neurobehavioral and biochemical abnormalities in rats orally treated with AFB1 per se (75 µg/kg body weight) or administered together with GA (20 and 40 mg/kg) for 28 uninterrupted days. Behavioral endpoints obtained with video-tracking software demonstrated significant (p  less then  .05) abatement of AFB1 -induced anxiogenic-like behaviors (increased freezing, urination, and fecal bolus discharge), motor and locomotor inadequacies, namely increased negative geotaxis and diminished grip strength, absolute turn angle, total time mobile, body rotation, maximum speed, and total distance traveled by GA. https://www.selleckchem.com/products/diphenhydramine.html The improvement of exploratory behavior in animals that received both AFB1 and GA was confirmed by track plots and heat maps appraisal. Abatement of AFB1 -induced decreases in acetylcholinesterase activity, antioxidant status and glutathione level by GA was accompanied by a marked reduction in oxidative stress markers in the cerebellum and cerebrum of rats. Additionally, GA treatment abrogated AFB1 -mediated decrease in interleukin-10 and elevation of inflammatory indices, namely tumor necrosis factor-α, myeloperoxidase activity, interleukin-1β, and nitric oxide. Further, GA treatment curtailed caspase-3 activation and histological injuries in the cerebral and cerebellar tissues. In conclusion, abatement of AFB1 -induced neurobehavioral abnormalities by GA involves anti-inflammatory, antioxidant, and antiapoptotic mechanisms in rats.Overexpression of the nucleotide-binding leucine-rich repeat protein 3 (NLRP3) inflammasome in chronic auto-immune diseases leads to skeletal anomalies, with severe osteopenia due to the activation of osteoclasts. Reproducing this phenotype in Nlrp3 knock-in mice has provided insights into the role of NLRP3 in bone metabolism. We studied the role of NLRP3 in physiological bone development using a complete Nlrp3 knock-out mouse model. We found impaired skeletal development in Nlrp3-/- mice, resulting in a shorter stature than that of Nlrp3+/+ mice. These growth defects were associated with altered femur bone growth, characterized by a deficient growth plate and an osteopenic profile of the trabeculae. No differences in osteoclast recruitment or activity were observed. Instead, Nlrp3-/- femurs showed a less mineralized matrix in the trabeculae than those of Nlrp3+/+ mice, as well as less bone sialoprotein (BSP) expressing hypertrophic chondrocytes. In vitro, primary osteoblasts lacking NLRP3 expression showed defective mineralization, together with the downregulation of BSP expression.