https://www.selleckchem.com/products/azd9291.html The aim of this study was to evaluate nitrogen pollution risks from distinct materials composting with the discrepancy of component, including chicken manure, municipal solid and straw waste (CM, MSW, SW). Results showed total nitrogen maximum mean concentrations were observed in CM (39.57 g/kg). Pollution risks in CM were continuous, while MSW and SW mainly concentrated during heating phases. Microbial analysis confirmed that pollution risks from ammonification and nitrification were more prevalent in CM. The risks of pollution caused by nitrate reduction accompanied N2O were the most serious in MSW. The multifunctional nitrogen-related microbes Pseudomonas and Bacillus were affected by microenvironments and contributed to different pollution risks. Furthermore, PICRUSt analysis identified the "inferred" key genes (pmoC-amoC, nrfH, nifD etc.) related to nitrogen pollution risks. This study evaluated nitrogen pollution risks and proposed the future directions, providing theoretical basis and feasible optimization measures for the mitigation of nitrogen pollution during composting.This study proposed a novel intermittent-aeration constructed wetland (CW) to resolve the vertical loss of oxygen in tertiary treatment. Compared to the non-aeration CW, the intermittent-aeration CW presented a better removal performance (90.8% chemical oxygen demand, 94.3% ammonia nitrogen, 91.5% total nitrogen and 94.1% total phosphorus) at a dissolved oxygen of 3 mg L-1 and hydraulic retention time of 2 days. It was mainly attributed to the higher abundance and greater diversity of bacterial community due to the oxygen supply. High-throughput sequencing indicated that high abundance of phyla Proteobacteria (35.34%) and Bacteroidetes (18.20%) in intermittent-aeration CW were responsible for simultaneous nitrogen and phosphorus removal. Besides, the dominant families Burkholderiaceae (11.16%), Microtrichales (6.88%) and Saprospiraceae (6.50