https://www.selleckchem.com/products/bay-1895344-hcl.html The results showed that the combination of multispectral imaging technology and chemometrics was an effective and nondestructive method for the determination of DON in wheat.In this study, a green extraction and purification process for the rapid preparation of corilagin from Phyllanthus has been designed using an aqueous ionic liquid coupled with preparative high-performance liquid chromatography (prep-HPLC) and precipitation. The results showed that the optimum extraction process for corilagin involved mixing Phyllanthus tenellus Roxb. with 0.4 M [BMIm]Br at a liquid-solid ratio of 10  1 and dispersing the mixture by ultrasonication at 50 °C for 15 min. Macroporous resin D101 and prep-HPLC were employed for [BMIm]Br removal and corilagin separation to yield corilagin of 86.49% purity. Subsequently, corilagin was further purified by water precipitation to achieve 99.12% purity. The results indicated the successful development of a new rapid and green process to prepare corilagin on a large scale from plants using [BMIm]Br. This promising process can be applied for the preparative separation and purification of other active compounds from complex plant systems.Antibiotic residues in foods have aroused wide public concern because of their potential side-effects. It is imperative to develop a simple, accurate and reliable method for the detection of antibiotic residues in foods. In this paper, we report a novel, facile and sensitive method for the detection of ampicillin in milk using a commercial personal glucose meter (PGM). Magnetic beads (MBs) were employed as the platform, an ampicillin aptamer was used as the recognition element and streptavidin was utilized as the bridge to link invertase and the aptamer. After the hydrolysis of sucrose to glucose, the concentration of glucose was quantitatively measured using the PGM. The difference of PGM signals with and without addition of ampicillin exhibits a good