The spleen is considered a non-essential organ. However, its importance is increasingly clear, given the serious disorders caused by its absence or dysfunction, e.g., greater susceptibility to infections, thromboembolism and cancer. Surgical techniques to preserve the spleen and maintain splenic function have become increasingly common. However, the morbidity and mortality associated with its absence and dysfunction are still high. We used the decellularization technique to obtain a viable splenic scaffold for recellularization in vitro and propose the idea of bioengineered spleen transplantation to the host. We observed the maintenance of important structural components such as white pulp, marginal zone and red pulp, in addition to the network of vascular ducts. The decellularized scaffold presents minimal residual DNA and SDS, which are essential to prevent immunogenic responses and transplantation failure. Also, the main components of the splenic matrix were preserved after decellularization, with retention of approximately 72% in the matrisomal protein content. The scaffold we developed was partially recellularized with stromal cells from the spleen of neonatal rats, demonstrating adhesion, proliferation and viability of cells. Therefore, the splenic scaffold is very promising for use in studies on spleen reconstruction and transplantation, with the aim of complete recovery of splenic function.Synthetic biology has the potential to positively transform society in many application areas, including medicine. In common with all revolutionary new technologies, synthetic biology can also enable crime. Like cybercrime, that emerged following the advent of the internet, biocrime can have a significant effect on society, but may also impact on peoples' health. For example, the scale of harm caused by the SARS-CoV-2 pandemic illustrates the potential impact of future biocrime and highlights the need for prevention strategies. Systematic evidence quantifying the crime opportunities posed by synthetic biology has to date been very limited. Here, we systematically reviewed forms of crime that could be facilitated by synthetic biology with a view to informing their prevention. A total of 794 articles from four databases were extracted and a three-step screening phase resulted in 15 studies that met our threshold criterion for thematic synthesis. https://www.selleckchem.com/products/az-33.html Within those studies, 13 exploits were identified. Of these, 46% were dependent on technologies characteristic of synthetic biology. Eight potential crime types emerged from the studies bio-discrimination, cyber-biocrime, bio-malware, biohacking, at-home drug manufacturing, illegal gene editing, genetic blackmail, and neuro-hacking. 14 offender types were identified. For the most commonly identified offenders (>3 mentions) 40% were outsider threats. These observations suggest that synthetic biology presents substantial new offending opportunities. Moreover, that more effective engagement, such as ethical hacking, is needed now to prevent a crime harvest from developing in the future. A framework to address the synthetic biology crime landscape is proposed.Given the global abundance of plant biomass residues, potential exists in biorefinery-based applications with lignocellulolytic fungi. Frequently isolated from agricultural cellulosic materials, Aspergillus terreus is a fungus efficient in secretion of commercial enzymes such as cellulases, xylanases and phytases. In the context of biomass saccharification, lignocellulolytic enzyme secretion was analyzed in a strain of A. terreus following liquid culture with sugarcane bagasse (SB) (1% w/v) and soybean hulls (SH) (1% w/v) as sole carbon source, in comparison to glucose (G) (1% w/v). Analysis of the fungal secretome revealed a maximum of 1.017 UI.mL-1 xylanases after growth in minimal medium with SB, and 1.019 UI.mL-1 after incubation with SH as carbon source. The fungal transcriptome was characterized on SB and SH, with gene expression examined in comparison to equivalent growth on G as carbon source. Over 8000 genes were identified, including numerous encoding enzymes and transcription factors involved in thA. terreus is a promising species for production of enzymes involved in the degradation of plant biomass. Given that this fungus is also able to produce thermophilic enzymes, this first global analysis of the transcriptome following cultivation on lignocellulosic carbon sources offers considerable potential for the application of candidate genes in biorefinery applications. To build a model for proximal junctional kyphosis (PJK) prognostication in Lenke 5 adolescent idiopathic scoliosis (AIS) patients undergoing long posterior instrumentation and fusion surgery by machine learning and analyze the risk factors for PJK. In total, 44 AIS patients (female/male 34/10; PJK/non-PJK 34/10) who met the inclusion criteria between January 2013 and December 2018 were retrospectively recruited from West China Hospital. Thirty-seven clinical and radiological features were acquired by two independent investigators. Univariate analyses between PJK and non-PJK groups were carried out. Twelve models were built by using four types of machine learning algorithms in conjunction with two oversampling methods [the synthetic minority technique (SMOTE) and random oversampling]. Area under the receiver operating characteristic curve (AUC) was used for model discrimination, and the clinical utility was evaluated by using F1 score and accuracy. The risk factors were simultaneously analyzed by a Cox regng extracted by machine learning is more valuable than any one alone, especially in the interpretation of risk factors. The random forest using SMOTE model has the great value for predicting the individual risk of developing PJK after long instrumentation and fusion surgery in Lenke 5 AIS patients. Moreover, the combination of the outcomes of a Cox model and the feature ranking extracted by machine learning is more valuable than any one alone, especially in the interpretation of risk factors. Despite major leaps in regenerative medicine, the regeneration of cardiomyocytes after ischemic conditions remains to elucidate. It is crucial to understand hypoxia induced cellular mechanisms to provide advanced treatment options, including the use of stem cell paracrine factors for myocardial regeneration. In this study, the regenerative potential of hypoxic human cardiomyocytes (group Hyp-CMC) was evaluated when co-cultured with human bone-marrow derived MSC (group Hyp-CMC-MSC) or stimulated with the secretome of MSC (group Hyp-CMC-S ). The secretome of normoxic MSC and CMC, and the hypoxic CMC was analyzed with a cytokine panel. Gene expression changes of α, proliferation marker and cytokinesis marker over different reoxygenation time periods of 4, 8, 24, 48, and 72 h were analyzed in comparison to normoxic CMC and MSC. Further, the proinflammatory cytokine IL-18 protein expression change, metabolic activity and proliferation was assessed in all experimental setups. α was persistently overexpressed in Hyp-CMC-S as compared to Hyp-CMC (except at 72 h).