https://www.selleckchem.com/products/pi3k-hdac-inhibitor-i.html Transverse mode instabilities are a major limitation for power scaling of fiber lasers but have so far only been observed in laser-active fibers. In this contribution we present experimental observations of transverse mode instabilities in a passive fiber. In this fiber, stimulated Raman scattering acted as heat source. To demonstrate the effect, a kW-level ytterbium-doped fiber laser was used as pump for a Raman amplifier. Transverse mode instabilities were only observed in the case with high Raman amplification. Frequency resolved stability measurements at various fiber positions as well as spectral and mode resolved measurements pin their origin to the passive fiber. This observation might help to gain further understanding of transverse mode instabilities and shows limitations of high-power Raman amplifiers.Scattering affects excitation power density, penetration depth and upconversion emission self-absorption, resulting in particle size -dependent modifications of the external photoluminescence quantum yield (ePLQY) and net emission. Micron-size NaYF4Yb3+, Er3+ encapsulated phosphors (∼4.2 µm) showed ePLQY enhancements of >402%, with particle-media refractive index disparity (Δn) 0.4969, and net emission increases of >70%. In sub-micron phosphor encapsulants (∼406 nm), self-absorption limited ePLQY and emission as particle concentration increases, while appearing negligible in nanoparticle dispersions (∼31.8 nm). These dependencies are important for standardising PLQY measurements and optimising UC devices, since the encapsulant can drastically enhance UC emission.Due to the negative coefficient of thermal expansion of graphene, temperature changes of graphene-coated photonic surfaces could induce resonant mode shifts in diffractive optical absorptance and emission. This study focuses on the modification of optical properties through folding, or "origami," of graphene covering a plasmonic metal cha