Finally we provide predictions for the dynamic behavior of the yet largely unexplored case of a viscous drop spreading over a soft visco-elastic material and predict the emergence of a new form of apparent hysteresis.A new and efficient method has been developed for the synthesis of 4-aminoquinoline through aerobic Cu(i)-catalyzed cyclization of β-(2-aminophenyl)-α,β-ynones. Under the optimized conditions, DMF could serve as a methine source to introduce C2 carbon and a nitrogen source to incorporate amino functionality in the 4th position. Mechanistic studies using 13C- and DMF-d7 revealed that the methine group was derived from a methyl substituent.Carbon-sulfur bond cross-coupling has become more and more attractive as an alternative protocol to establish carbon-carbon and carbon-heteroatom bonds. Diverse transformations through transition-metal-catalyzed C-S bond activation and cleavage have recently been developed. This review summarizes the advances in transition-metal-catalyzed cross-coupling via carbon-sulfur bond activation and cleavage since late 2012 as an update of the critical review on the same topic published in early 2013 (Chem. Soc. Rev., 2013, 42, 599-621), which is presented by the categories of organosulfur compounds, that is, thioesters, thioethers including heteroaryl, aryl, vinyl, alkyl, and alkynyl sulfides, ketene dithioacetals, sulfoxides including DMSO, sulfones, sulfonyl chlorides, sulfinates, thiocyanates, sulfonium salts, sulfonyl hydrazides, sulfonates, thiophene-based compounds, and C[double bond, length as m-dash]S functionality-bearing compounds such as thioureas, thioamides, and carbon disulfide, as well as the mechanistic insights. https://www.selleckchem.com/products/terephthalic-acid.html An overview of C-S bond cleavage reactions with stoichiometric transition-metal reagents is briefly given. Theoretical studies on the reactivity of carbon-sulfur bonds by DFT calculations are also discussed.Nanoparticles (NPs) used for targeted delivery purposes are rapidly gaining importance in diagnostic and therapeutic fields. These agents have been studied extensively so far to reveal their optimal physicochemical properties including the effects of ligands and their density on the surface of NPs. This article was conducted through a computational approach (all-atom molecular dynamics simulations) to predict the stability of NPs based on a poly-lactic-co-glycolic acid (PLGA) hydrophobic core with a poly-ethylene glycol (PEG) hydrophilic shell and varying numbers of riboflavin (RF) molecules as ligands. Depending on the molecular weight of the polymers, the most stable composition of NPs was achieved at 20 wt% and 10 wt% PLGA-PEG-RF for PLGA3kDa-PEG2kDa and PLGA4.5kDa-PEG2kDa polymers, respectively. According to the simulations, riboflavin molecules were located on the surface of the NPs, which would indicate that riboflavin-bound PLGA-PEG NPs could be efficiently utilized for active targeting purposes. To scrutinize the simulation results, NPs with riboflavin ligands were synthesized and put into in vitro experiments. Outstandingly, the empirical outcomes revealed that the hydrodynamic sizes of NPs also met minimum points at 20 and 10 wt% for PLGA3kDa-PEG2kDa and PLGA4.5kDa-PEG2kDa, respectively. Moreover, similar trends in the gyration radius as a function of riboflavin content were observed in the simulation analysis and the experimental results, which would indicate that the method of molecular dynamics (MD) simulation is a reliable mathematical technique and could be applied for predicting the physicochemical properties of NPs.The nature and distribution of charged residues on the surface of proteins play a vital role in determining the binding affinity, selectivity and kinetics of association to ligands. When it comes to DNA-binding domains (DBDs), these functional features manifest as anisotropic distribution of positively charged residues on the protein surface driven by the requirement to bind DNA, a highly negatively charged polymer. In this work, we compare the thermodynamic behavior of nine different proteins belonging to three families - LacR, engrailed and Brk - some of which are disordered in solution in the absence of DNA. Combining detailed electrostatic calculations and statistical mechanical modeling of folding landscapes at different distances and relative orientations with respect to DNA, we show that non-specific electrostatic interactions between the protein and DNA can promote structural transitions in DBDs. Such quinary interactions that are strictly agnostic to the DNA sequence induce varied behaviors including folding of disordered domains, partial unfolding of ordered proteins and (de-)population of intermediate states. Our work highlights that the folding landscape of proteins can be tuned as a function of distance from DNA and hints at possible reasons for DBDs exhibiting complex kinetic-thermodynamic behaviors in the absence of DNA.The hammer impact test is a conventional modal analysis technique in large-scale structures. It possesses efficient capability in the excitation of any structure within a wide range of frequencies and thus, this technique can be a good method to identify the dynamics of any structure. Here, we have implemented this method on nano-scale structures using molecular dynamics simulations. For convenience, we used a carbon nanotube (CNT) that showed complicated behavior due to van der Waals (vdW) interactions with a graphene sheet. The graphene sheet represents the vdW interactions of the CNT with its surroundings, which is an important distinction between the phenomena at the nano-scale. The variations in the fundamental natural frequency and quality factor of the CNT with different strengths of the vdW interactions are explored. For this purpose, the distance between the CNT and graphene is used as the tuning parameter. The results of the hammer impact tests were compared and matched to those obtained with a well. These results can be used in the design of novel experimental procedures for the evaluation of the vibrational properties of nanostructures.Lithium (Li) metal is a promising anode material for next-generation batteries because of its low standard reduction potential (-3.04 V vs. SHE) and high specific capacity (3860 mA h g-1). However, it is still challenging to directly use Li metal as anode material in commercial batteries because of unstable Li dendrite formation and accumulated solid-electrolyte interphase. Possible methods that can suppress the unwanted formation of Li dendrites are (i) by increasing the electrode surface area and (ii) formation of porosity for confining Li. Here, we tested microporous ( less then 2 nm) carbon and mesoporous (2-50 nm) carbon as host materials for the Li metal anode to avoid their degradation during cycling of lithium metal batteries (LMBs). Mesoporous carbon was more effective than microporous carbon as a host material to confine the Li metal and the lifetime of mesoporous carbon was more than twice as long as those of the Cu foil and microporous carbon. After confirmed better anode performance of mesoporous carbon host material, we applied Li-plated mesoporous carbon as an anode in a lithium-sulfur battery (Li-S) full cell.