https://www.selleckchem.com/products/INCB18424.html Despite significant progress achieved in the preparation of chiral nanoparticles, the enantioseparation of racemates still presents a big challenge in nanomaterial research. Herein, we report the synthesis and structural characterization of racemic anisotropic nanocluster Ag30(C2B10H9S3)8Dppm6 (Ag 30 -rac), which is protected by mixed carboranetrithiolate and phosphine ligands. Spontaneous self-resolution of the racemates was realized through conglomerate crystallization in dimethylacetamide (DMAc). The homochiral nanoclusters in the racemic conglomerates adopt enantiomeric helical self-assemblies (R/L-Ag 30 ). Diverse noncovalent interactions as the driving force in directing superstructure packing were elucidated in detail. Furthermore, the nanoclusters show red luminescence in both solid and solution states, and the racemic conglomerates display a mirror-image CPL response. This work provides atom-precise helical nanoparticle superstructures that facilitate an in-depth understanding of the helical-assembly mechanism.Achiral building blocks forming achiral structures is a common occurrence in nature, while chirality emerging spontaneously from an achiral system is usually associated with important scientific phenomena. We report on the spontaneous chiral symmetry-breaking phenomena upon the topographic confinement of achiral lyotropic chromonic liquid crystals in periodically arranged micrometer scale air pillars. The anisotropic fluid arranges into chiral domains that depend on the arrangement and spacing of the pillars. We characterize the resulting domains by polarized optical microscopy, support their reconstruction by numerical calculations, and extend the findings with experiments, which include chiral dopants. Well-controlled and addressed chiral structures will be useful in potential applications like programmable scaffolds for living liquid crystals and as sensors for detecting chirality at the molecular