In Thy1-GFP mice crossed with Mecp2 mutant mice, Sholl intersections analyses showed a subtle increase in number of intersections due to increased branching proximal to the soma in Mecp2 KO mice. Our results demonstrate that the expression of MeCP2 and the effects of Mecp2 mutations are highly specific to tissue and cell types.Monocarboxylate transporter 2 (MCT2) is the predominant monocarboxylate transporter expressed by neurons. MCT2 plays an important role in brain energy metabolism. Stroke survivors are at high risk of cognitive impairment. We reported previously that stroke-induced cognitive impairment was related to impaired energy metabolism. In the present study, we report that cognitive function was impaired after stroke in rats. We found that MCT2 expression, but not that of MCT1 or MCT4, was markedly decreased in the rat hippocampus at 7 and 28 days after transient middle cerebral artery occlusion (tMCAO). Moreover, MCT2 overexpression promoted recovery of cognitive function after stroke. The molecular mechanism underlying these effects may be related to an increase in adenosine monophosphate-activated protein kinase-mediated mitochondrial biogenesis induced by overexpression of MCT2. Our findings suggest that MCT2 activation ameliorates cognitive impairment after stroke.Disruption of sleep due to acute or chronic stress can lead to changes in emotional memory processing. Sleep disturbances are highly prevalent in post-traumatic stress disorder (PTSD), but still, the contribution of sleep deprivation on the susceptibility to PTSD has received little attention. To determine whether rapid eye movement sleep deprivation (SD) alters the development of fear expression or fear-associated memory impairment in adolescent rats, we performed animal emotional behavior tests using an SD animal model with the flowerpot technique. SD rats showed an increase in locomotor activity frequency and a decrease in sucrose consumption compared to control rats. An increase in freezing behavior during shock trials was observed in SD rats. Noticeably, it was observed that when applying the SD condition after fear stimuli exposure, fear extinction was delayed more in SD rats than in control rats. Overall, these results indicate that SD in adolescent rats leads to increased locomotor activity and anhedonic behavior, as well as increased fear expression and delayed fear extinction, suggesting that SD would lead to increased severity of PTSD-like phenotype.Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are common critical diseases. Bone marrow mesenchymal stem cell (BMSC) transplantation is previously shown to effectively rescue injured lung tissues. The therapeutic mechanism of BMSC-derived exosomes is not fully understood. Here, we investigated the BMSC-derived exosomal microRNAs (miRNAs) on effecting lipopolysaccharide- (LPS-) induced ALI and its mechanism. In vitro, rat alveolar macrophages were treated with or without exosomes in the presence of 10 μg/ml LPS for 24 h. Cell viability was determined with Cell Counting Kit-8 assay. https://www.selleckchem.com/products/deg-77.html Apoptotic ratio was determined with TUNEL and Annexin V-FITC/PI double staining. The levels of miR-384-5p and autophagy-associated genes were measured by RT-qPCR and western blot. Autophagy was observed by TEM and assessed by means of the mRFP-GFP-LC3 adenovirus transfection assay. In vivo, we constructed LPS-induced ALI rat models. Exosomes were injected into rats via the caudal vein or trachea 4 h later aftherapeutic strategy for ALI/ARDS.Cervical cancer is a common female malignant tumor that seriously threatens human health. This study explored the anticervical cancer effects and potential mechanisms of Rotundifuran (RTF), a natural product isolated from Vitex trifolia L. In this study, we found that RTF can suppress the proliferation of cervical cancer cell lines, including HeLa and SiHa cells (with the IC50 less than 10 μM), via induction of apoptosis in vitro, and the antitumor effect of RTF is further confirmed on the HeLa cell-inoculated xenograft model. In addition, our results proved that the antitumor effects of RTF might be related with the reactive oxygen species- (ROS-) induced mitochondrial-dependent apoptosis through MAPK and PI3K/Akt signal pathways. Using proteomics analysis and the drug affinity responsive target stability- (DARTS-) combined mass spectrometry (DARTS-MS), Cyr61 was indicated as a potential target for RTF in cervical cancer cells. Our present study would be beneficial for the development of RTF as a candidate for treatment of cervical cancer in the future.Intervertebral disc degeneration (IVDD), one of the most common clinical diseases worldwide, causes disc herniation and sciatica. Recent studies have identified the involvement of mitochondrial dysfunction, inflammatory responses, and extracellular matrix degradation in IVDD. Mangiferin is known to protect against various diseases by inhibiting oxidative stress, suppressing inflammation reaction, and relieving mitochondrial dysfunction. Whether mangiferin can alleviate IVDD remains to be elucidated. In the present study, human nucleus pulposus cells (HNPCs) and mouse intervertebral discs were cultured and stimulated with TNF-α, with or without treatment of mangiferin. Moreover, we established a rat needle puncture model and injected mangiferin into the intervertebral discs to verify its protective effect on IVDD. Furthermore, the activity of the NF-κB signaling pathway was tested in vitro. Our results indicated that mangiferin alleviated the inflammatory response and reversed the loss of major intervertebral disc components. Besides, mangiferin reduced reactive oxygen species production, ameliorated mitochondrial damage, and decreased the expression of apoptosis-related parameters in stimulation of TNF-α. In addition, mangiferin antagonized the activation of the NF-κB signaling pathway induced by TNF-α. Collectively, mangiferin antagonized mitochondrial ROS in NP cells and protected against IVDD by suppressing the activation of the NF-κB signaling pathway, which might provide a potential therapeutic instrument for IVDD.