https://www.selleckchem.com/products/Pancuronium-bromide(Pavulon).html A mild organophotoredox synthetic protocol for forming a Csp3-S/Se bond by reacting widespread redox-active esters with thio/selenosulfonates has been developed. The power of the synthetic manifold is fueled by an unprecedented broad substrate scope and wide functional group tolerance.The highly diastereoselective sulfa-Michael addition of thiolates to enantiopure 2-sulfinyl dienes leads to anti or syn 2-ene-1,4-hydroxy sulfides in good yields and selectivities dependent on the reaction conditions in a diastereodivergent process. Synthetic applications of these enantiopure hydroxy sulfides by subsequent sigmatropic rearrangements have been outlined.Readily available aryldimethylsulfonium triflates react with zinc powder under nickel catalysis via the selective cleavage of the sp2-hybridized carbon-sulfur bond to produce salt-free arylzinc triflates under mild conditions. This zincation displays superb chemoselectivity and thus represents a protocol that is complementary or orthogonal to existing methods. The generated arylzinc reagents show both high reactivity and chemoselectivity in palladium-catalyzed and copper-mediated cross-coupling reactions.Achieving direct C-H hydroxylation in a highly diastereo- and enantioselective manner is still a challenging goal. This reaction is mainly hindered by the potential for overoxidation of the generated alcohols as well as low stereoselectivity. Herein, we present an enantioselective benzylic C-H hydroxylation catalyzed by a manganese complex, H2O2, and a carboxylic acid in 2,2,2-trifluoroethanol. The benzylic alcohols were successfully furnished in excellent diastereoselectivities (up to >955) and enantioselectivities (up to 95% ee). As a highlight of this work, high diastereoselectivity of C-H hydroxylation could be achieved by tuning the amount of carboxylic acid additive.Unusual intermolecular trapping of esters by carbenes generated via a Huisgen cyc