Finally, current challenges, critical steps and future directions of the whole analysis process (from sample procurement to in-situ implementation) are described.Many environmental pollutants pose a toxicological hazard only after metabolic activation. In vitro bioassays using cell lines or bacteria have often no or reduced metabolic activity, which impedes their use in the risk assessment. To improve the predictive capability of in vitro assays, external metabolization systems like the liver S9 fraction are frequently combined with in vitro toxicity assays. While it is typical for S9 fractions that samples and testing systems are combined in the same exposure system, we propose to separate the metabolism step and toxicity measurement. This allows for a modular combination of metabolic activation by enzymes isolated from rat liver (S9) or a biotechnological alternative (ewoS9R) with in vitro bioassays that lack metabolic capacity. Benzo(a)pyrene and 2-aminoanthracene were used as model compounds to optimize the conditions for the S9 metabolic degradation/activation step. The Ames assay with Salmonella typhimurium strains TA98 and TA100 was applied to validate the set-up of decoupling the S9 activation/metabolism from the bioassay system. S9 protein concentration of 0.25 mgprotein/mL, a supplement of 0.13 mM NADPH and a pre-incubation time of 100 min are recommended for activation of samples prior to dosing them to in vitro bioassays using the regular dosing protocols of the respective bioassay. EwoS9R performed equally well as Moltox S9, which is a step forward in developing true animal-free in vitro bioassays. After pre-incubation with S9 fraction, chemicals induced bacteria revertants in both the TA98 and the TA100 assay as efficiently as the standard Ames assay. The pre-incubation of chemicals with S9 fraction could serve for a wide range of cellular in vitro assays to efficiently combine activation and toxicity measurement, which may greatly facilitate the application of these assays for chemical hazard assessment and monitoring of environmental samples.This work studies carbon (C) and hydrogen (H) isotope composition of plant biomass and soil organic matter (SOM) in an attempt to assess both, changes exerted by fire and possible inputs of charred materials to the soil after a wildfire. Isotope composition of bulk soil, soil particle size fractions and biomass of the dominant standing vegetation in the area (Quercus suber) from Doñana National Park (SW-Spain) were studied by isotope ratio mass spectrometry (IRMS). SOM C isotope composition indicates the occurrence of two SOM pools with different degree of alteration. Coarse soil fractions (>0.5 mm) were found 13C depleted with δ13C values close to those in leaf biomass, pointing to a predominance of poorly transformed SOM. Conversely, fine fractions (0.5 mm) displayed significant lower δ2H values than the intermediate and fine ones ( less then 0.5 mm), again similar to those in leaf biomass (c. -80‰), whereas the fine fractions were found deuterium (2H)-enriched with significant higher δ2H values (c. 50‰), suggesting physical speciation of H depending on soil particle size. The fire produced a significant 2H depletion (Δ2H c. -10‰) in the finer fractions ( less then 0.1 mm). The study of stable isotope analysis added new information and complements the results obtained by other proxies to better understand the effect of fire on SOM.Residual trace organic pollutants (TOPs) and associated biological effects from secondary effluent (SE) are attracting much attention because of their safety concerns. Granular activated carbon (GAC) adsorption, due to its low cost and high efficiency, is widely applied for further wastewater treatment, but its selective removals of TOPs and biological effects are poorly understood. In the present study, the surface physicochemical characteristics of four types of typical GACs were investigated, and their correlation with luminescent bacteria toxicity was discussed. Based on the biological effect control, shell GAC, with a great adsorption capacity and high functional group contents was selected for further study, including for the removal of fluorescent dissolved organic matter (DOM), 21 TOPs, and 3 biological effects. The shell GAC showed a promising property of removing fluorescent DOM and TOPs. The total concentration of 21 detected TOPs, including 12 pesticides and 9 pharmaceuticals, achieved 82% removal when 30 g/L shell GACs was added. Individual chemicals removal by GAC adsorption was not well described by an individual parameter (e.g., logD, molecular size, charge, functional groups), but rather by a variety of physical and chemical interactions among TOPs, DOM, and GAC. The biological effects from SE were mainly caused by TOPs and DOM. https://www.selleckchem.com/screening-libraries.html Hence, shell GACs also showed high removal efficiencies of luminescent bacteria toxicity, genotoxicity, and photosynthetic inhibition effect. The removal mechanisms of the three biological effects from SE were deeply discussed. Therefore, the GAC treatment is considered to be one of the most suitable options to ensure the ecological safety of discharged wastewater, because it can effectively control DOM, TOPs, and associated biological effects.The ongoing pandemic of coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has resulted in unprecedented disease burden, healthcare costs, and economic impacts worldwide. Despite several measures, SARS-CoV-2 has been extremely impactful due to its extraordinary infection potential mainly through coronavirus-borne saliva respiratory and droplet nuclei of an infected person and its considerable stability on surfaces. Although the disease has affected over 180 countries, its extent and control are significantly different across the globe, making it a strong case for exploration of its behavior and dependence across various environmental pathways and its interactions with the virus. This has spurred efforts to characterize the coronavirus and understand the factors impacting its transmission and survival such as aerosols, air quality, meteorology, chemical compositions and characteristics of particles and surfaces, which are directly or indirectly associated with coronaviruses infection spread.