https://www.selleckchem.com/products/OSI-906.html A wearable textile brace is introduced as an electromagnetic imaging system that breaks hospital boundaries to real-time onsite scanning for knee injuries. The proposed brace consists of a 12-element textile slot loop antenna array, which is designed to match the human knee for enhanced electromagnetic wave penetration. Wool felt and conductive fabric are used to fabricate the antenna array thanks to their flexibility and proper dielectric properties. Each antenna element has a compact footprint of. and achieves unidirectional radiation, high front-to-back ratio of 14 dB, wide bandwidth of 81% at 0.7-1.7 GHz, and safe SAR levels. A modified double-stage delay, multiply, and sum (DS-DMAS) algorithm is used to process the collected signals from the antenna array based on differential left/right knee imaging. The reconstructed images numerically and experimentally on realistic phantoms demonstrate the potential of the brace system for onsite detection of different types of ligaments/tendon tears.Over the past decades, Chemical-induced Disease (CID) relations have attracted extensive attention in biomedical community, reflecting wide applications in biomedical research and healthcare field. However, prior efforts fail to make full use of the interaction between local and global contexts in biomedical document, and the derived performance needs to be improved accordingly. In this paper, we propose a novel framework for document-level CID relation extraction. More specifically, a stacked Hypergraph Aggregation Neural Network (HANN) layers are introduced to model the complicated interaction between local and global contexts, based on which better contextualized representations are obtained for CID relation extraction. In addition, the CID Relation Heterogeneous Graph is constructed to capture the information with different granularities and improve further the performance of CID relation classification. Experiments on a rea