ming temperatures, ocean acidification, wind speed, biology, and anthropogenic perturbations, impacts the evolution of sea spray aerosol properties, as well as shapes the composition of the marine atmosphere.The Belousov-Zhabotinsky (BZ) reaction has been applied to give autonomous dynamic behaviors to artificial systems. This reaction is conducted in an aqueous system, but it produces some hydrophobic intermediates, such as bromine. On the basis of previous works about reactions in the lipid bilayer, we investigated how liposome membranes (water-oil interface) affect the BZ reaction. Herein diacylglycerophosphocholine (PC) molecules with a variety of hydrocarbon tails were selected as components of liposomes, and the BZ reaction in the presence of the liposomes was characterized. As a result, membrane fluidity was the main characteristic leading to changes in the reaction behavior. The decrease of the frequency of oscillations was relevant to membrane fluidity, suggesting the interaction of bromine species in the hydrophobic site of the liposomes. In addition, the heterogeneous membrane (so+ld) of DMPC showed a fast decrease in the amplitude of oscillations. Conclusively, characteristics of the hydrophobic environment play a role in the reaction.Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) is an established tool in drug development, which enables visualization of drugs and drug metabolites at spatial localizations in tissue sections from different organs. However, robust and accurate quantitation by MALDI-MSI still remains a challenge. We present a quantitative MALDI-MSI method using two instruments with different types of mass analyzers, i.e., time-of-flight (TOF) and Fourier transform ion cyclotron resonance (FTICR) MS, for mapping levels of the in vivo-administered drug citalopram, a selective serotonin reuptake inhibitor, in mouse brain tissue sections. Six different methods for applying calibration standards and an internal standard were evaluated. The optimized method was validated according to authorities' guidelines and requirements, including selectivity, accuracy, precision, recovery, calibration curve, sensitivity, reproducibility, and stability parameters. We showed that applying a dilution series of calibration standards followed by a homogeneously applied, stable, isotopically labeled standard for normalization and a matrix on top of the tissue section yielded similar results to those from the reference method using liquid chromatography-tandem mass spectrometry (LC-MS/MS). The validation results were within specified limits and the brain concentrations for TOF MS (51.1 ± 4.4 pmol/mg) and FTICR MS (56.9 ± 6.0 pmol/mg) did not significantly differ from those of the cross-validated LC-MS/MS method (55.0 ± 4.9 pmol/mg). The effect of in vivo citalopram administration on the serotonin neurotransmitter system was studied in the hippocampus, a brain region that is the principal target of the serotonergic afferents along with the limbic system, and it was shown that serotonin was significantly increased (2-fold), but its metabolite 5-hydroxyindoleacetic acid was not. This study makes a substantial step toward establishing MALDI-MSI as a fully quantitative validated method.Plastic pollution in Antarctica and the Southern Ocean has been recorded in scientific literature since the 1980s; however, the presence of microplastic particles ( less then 5 mm) is less understood. Here, we aimed to determine whether microplastic accumulation would vary among Antarctic and Southern Ocean regions through studying 30 deep-sea sediment cores. Additionally, we aimed to highlight whether microplastic accumulation was related to sample depth or the sediment characteristics within each core. Sediment cores were digested and separated using a high-density sodium polytungstate solution (SPT) and microplastic particles were identified using micro-Fourier-transform infrared spectroscopy (μFTIR). Microplastic pollution was found in 93% of the sediment cores (28/30). The mean (±SE) microplastics per gram of sediment was 1.30 ± 0.51, 1.09 ± 0.22, and 1.04 ± 0.39 MP/g, for the Antarctic Peninsula, South Sandwich Islands, and South Georgia, respectively. Microplastic fragment accumulation correlated significantly with the percentage of clay within cores, suggesting that microplastics have similar dispersion behavior to low density sediments. Although no difference in microplastic abundance was found among regions, the values were much higher in comparison to less remote ecosystems, suggesting that the Antarctic and Southern Ocean deep-sea accumulates higher numbers of microplastic pollution than previously expected.Organophosphate esters (OPEs) represent an important group of industrial additives with broad applications. However, their occurrences and fate in the atmospheric environment have not been sufficiently investigated. https://www.selleckchem.com/products/rilematovir.html Our study focused on four novel OPEs, including tris(2,4-di-tert-butylphenyl) phosphate (AO168 = O), bis(2,4-di-tert-butylphenyl) pentaerythritol diphosphate, triisodecyl phosphate, and trisnonylphenol phosphate, and characterized their organophosphite antioxidant (OPA) precursors and selected transformation products, in airborne fine particles from South China. House dust from South China was also studied for comparison. Among these four OPEs, exceedingly high concentrations were determined for AO168 = O (i.e., median 25 500 ng/g in PM2.5, 52 900 ng/g in PM1.0, and 10 700 ng/g in indoor dust), reaching 1 order of magnitude greater than those of traditional OPEs. Their OPA precursors were not detectable in airborne particles but hypothesized as one of the sources for airborne OPEs. In addition, potential transformation products of AO168 = O, including bis(2,4-di-tert-butylphenyl) phosphate (B2,4DtBPP) and 2,4-di-tert-butylphenol (2,4DtBP), also exhibited broad distributions. The levels of 2,4DtBP even surpassed those of AO168 = O in particles. The links between OPAs, OPEs, and other transformation products indicate the complexity of OPE-related chemicals in atmospheric environments. These links should be taken into consideration for a better characterization of OPEs' environmental and health risks.