In this study, we investigated the degradation mechanism of erythromycin (ERY) during UV-LED/chlorine treatment using a 275-nm ultraviolet light-emitting diode (UV-LED). This wavelength is known to generate fewer disinfection byproducts (DBPs), and to have higher energy and photon yield efficiency compared to low pressure mercury (LP-UV) lamp which emits 254 nm of UV radiation. The degradation of ERY during the UV-LED/chlorine reaction followed pseudo-first-order kinetics. While Cl• and ClO• radicals along with other secondary radicals played key roles in the degradation of ERY at alkaline pH conditions, •OH radical was the main contributor at acidic pH conditions. Using ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-QToF-MS), we tentatively identified six byproducts. Trace amounts of DBPs, such as chloroform (CHCl3) and chlorate (ClO3-) ions, were also detected at less than 0.3 mg/L. There was no residual antibiotic effect at the end of the UV-LED/chlorine reaction due to the complete degradation of important moieties, such as macrolide, in ERY. https://www.selleckchem.com/products/sodium-phenylbutyrate.html Toxicity decreased by 20% after 20 min during the UV-LED/chlorine process of ERY (1.0 mg/L) degradation. Finally, we confirmed the inactivation of ARB and ARG during the UV-LED/chlorine process.Four microbes (Campylobacter spp., Escherichia coli, Cryptosporidium spp. and Giardia spp.) were monitored in 16 waterways that supply public drinking water for 13 New Zealand towns and cities. Over 500 samples were collected from the abstraction point at each study site every three months between 2009 and 2019. The waterways represent a range from small to large, free flowing to reservoir impoundments, draining catchments of entirely native vegetation to those dominated by pastoral agriculture. We used machine learning algorithms to explore the relative contribution of land use, catchment geology, vegetation, topography, and water quality characteristics of the catchment to determining the abundance and/or presence of each microbe. Sites on rivers draining predominantly agricultural catchments, the Waikato River, Oroua River and Waiorohi Stream had all four microbes present, often in high numbers, throughout the sampling interval. Other sites, such as the Hutt River and Big Huia Creek in Wellington which dracent outbreaks of waterborne disease due to treatment failures, have highlighted the need to manage water supplies on multiple fronts. This research has identified potential catchment level variables, and thresholds, that could be better managed to reduce the potential for pathogens to enter drinking water supplies.Coolia malayensis is one of the commonly found benthic dinoflagellates in Hong Kong which can produce biotoxins and threaten the early life stages of marine invertebrates. Seawater temperature has been recognized as one of the primary environmental factors that affect the formation of harmful algal blooms. The present study evaluated the responses of C. malayensis, including growth, toxicity and toxin content (putative analogues of okadaic acid and azaspiracids), after exposure to a range of seven different temperatures (i.e., 16°C, 18°C, 20°C, 22°C, 24°C, 26°C, and 28°C). The highest algal density and specific growth rate were recorded at 24°C. Significantly higher Fv/Fm (maximum quantum yield of PSII) and total phaeo-pigment values were observed in the exponential growth phase at 28°C. The toxicity of the algal extract, which was assessed by the lethality rate of Artemia larvae, increased with temperature. The highest toxin content was detected at the second highest temperature treatment, i.e., 26°C. Overall, temperature had significant effects on the physiological activities and toxicity of C. malayensis. This study has raised attention to the potentially increasing risks posed by toxic benthic dinoflagellates during heat waves in coastal waters.Substantial N2O emission results from activated sludge nitrogen removal processes. N2O-reducing organisms possessing NosZ-type N2O reductases have been recognized to play crucial roles in suppressing emission of N2O produced in anoxic activated sludge via denitrification; however, which of the diverse nosZ-possessing organisms function as the major N2O sink in situ remains largely unknown. Here, nosZ genes and transcripts in wastewater microbiomes were analyzed with the group-specific qPCR assays designed de novo combining culture-based and computational approaches. A sewage sample was enriched in a batch reactor fed continuous stream of N2 containing 20-10,000 ppmv N2O with excess amount (10 mM) of acetate as the source of carbon and electrons, where 14 genera of potential N2O-reducers were identified. All available amino acid sequences of NosZ affiliated to these taxa were grouped into five subgroups (two clade I and three clade II groups), and primers/probe sets exclusively and comprehensively targeting the subgroups were designed and validated with in silico PCR. Four distinct activated sludge samples from three different wastewater treatment plants in Korea were analyzed with the qPCR assays and the results were validated with the shotgun metagenome analysis results. With these group-specific qPCR assays, the nosZ genes and transcripts of six additional activated sludge samples were analyzed and the results of the analyses clearly indicated the dominance of two clade II nosZ subgroups (Flavobacterium-like and Dechloromonas-like) among both nosZ gene and transcript pools.Mesenchymal stem cells (MSCs) critically contribute to bone formation, and proper induction of osteogenic differentiation can lead to an increase in bone mass. In the present study, we reported that an increased miR-194-5p level in plasma is inversely related to the degree of bone formation in osteoporosis patients. We also noted that increased miR-194-5p in the MSCs of ovariectomized (OVX) mice and agomiR-194-5p manipulation of miR-194-5p significantly suppressed bone formation, both in aged and OVX mice. Furthermore, our in vitro study showed that overexpression of miR-194-5p suppresses osteogenic differentiation, as evidenced by the decreased bone formation marker genes and matrix mineralization. The luciferase assay indicated that Wnt family member 5a (Wnt5a) is a target gene of miR-194-5p that positively regulates osteogenic differentiation. Collectively, these data indicated that miR-194-5p inhibition may be a potential strategy for osteoporosis prevention.