https://www.selleckchem.com/products/Epinephrine-bitartrate-Adrenalinium.html © 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.Biocompatible and proteolysis-resistant poly-β-peptides have broad applications and are dominantly synthesized via the harsh and water-sensitive ring-opening polymerization of β-lactams in a glovebox or using a Schlenk line, catalyzed by the strong base LiN(SiMe3 )2 . We have developed a controllable and water-insensitive ring-opening polymerization of β-amino acid N-thiocarboxyanhydrides (β-NTAs) that can be operated in open vessels to prepare poly-β-peptides in high yields, with diverse functional groups, variable chain length, narrow dispersity and defined architecture. These merits imply wide applications of β-NTA polymerization and resulting poly-β-peptides, which is validated by the finding of a HDP-mimicking poly-β-peptide with potent antimicrobial activities. The living β-NTA polymerization enables the controllable synthesis of random, block copolymers and easy tuning of both terminal groups of polypeptides, which facilitated the unravelling of the antibacterial mechanism using the fluorophore-labelled poly-β-peptide. © 2020 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.The selective hydrogenation of organic carbonates to methanol is a relevant transformation to realize flexible processes for the recycling of waste CO2 with renewable H2 mediated by condensed carbon dioxide surrogates. Oxide-supported copper nanoparticles are promising solid catalysts for this selective hydrogenation. However, essential for their optimization is to rationalize the prominent impact of the oxide support on performance. Herein, the role of Lewis acid centers, exposed on the oxide support at the periphery of the Cu nanoparticles, was systematically assessed. For the hydrogenation of propylene carbonate, as a model cyclic carbonate, the conversion rate, the apparent activation energy, and the selectivity to methanol correlate with the Lewis acidity of the co