weight (7 mg and 14 mg doses) versus weekly subcutaneous dulaglutide 0·75 mg by week 52. FUNDING Novo Nordisk. BACKGROUND Given the unique phenotype of type 2 diabetes in Japanese patients, novel therapies such as oral semaglutide require evaluation in this population. PIONEER 9 aimed to assess the dose-response of oral semaglutide and to compare the efficacy and safety of oral semaglutide with placebo and a subcutaneous GLP-1 receptor agonist in a Japanese population. METHODS PIONEER 9 was a 52-week, phase 2/3a, randomised, controlled trial done at 16 sites (clinics and university hospitals) in Japan. Japanese patients aged 20 years or older with uncontrolled type 2 diabetes managed by diet or exercise or with oral glucose-lowering drug monotherapy (washed out) were randomly assigned (11111) to receive double-blind once-daily oral semaglutide (3 mg, 7 mg, or 14 mg) or placebo, or open-label subcutaneous once-daily liraglutide 0·9 mg. The primary endpoint was change in HbA1c from baseline to week 26 with the trial product (primary) estimand (which assumes all patients remained on trial product without rescue medicatios (95% CI -0·0 to 0·6; p=0·0799) for oral semaglutide 3 mg, -0·1 percentage points (-0·4 to 0·2; p=0·3942) for oral semaglutide 7 mg, and -0·3 percentage points (-0·6 to -0·0; p=0·0272) for oral semaglutide 14 mg. Gastrointestinal events, predominantly of mild or moderate severity, were the most frequently reported class of adverse event with oral semaglutide constipation was most common, occurring in five to six (10-13%) patients with oral semaglutide, three (6%) with placebo, and nine (19%) with liraglutide 0·9 mg. INTERPRETATION This study showed that oral semaglutide provides significant reductions in HbA1c compared with placebo in a dose-dependent manner in Japanese patients with type 2 diabetes, and has a safety profile consistent with that of GLP-1 receptor agonists. FUNDING Novo Nordisk. Diffusion obstacles in membranes have not been directly visualized because of fast membrane dynamics and the occurrence of subresolution molecular complexes. To understand the obstacle characteristics, mobility-based methods are often used as an indirect way of assessing the membrane structure. Molecular movement in biological plasma membranes is often characterized by anomalous diffusion, but the exact underlying mechanisms are still elusive. Imaging total internal reflection fluorescence correlation spectroscopy (ITIR-FCS) is a well-established mobility-based method that provides spatially resolved diffusion coefficient maps and is combined with FCS diffusion law analysis to examine subresolution membrane organization. In recent years, although FCS diffusion law analysis has been instrumental in providing new insights into the membrane structure below the optical diffraction limit, there are certain exceptions and anomalies that require further clarification. To this end, we correlate the membrane structural features imaged by atomic force microscopy (AFM) with the dynamics measured using ITIR-FCS. We perform ITIR-FCS measurements on supported lipid bilayers (SLBs) of various lipid compositions to characterize the anomalous diffusion of lipid molecules in distinct obstacle configurations, along with the high-resolution imaging of the membrane structures with AFM. Furthermore, we validate our experimental results by performing simulations on image grids with experimentally determined obstacle configurations. This study demonstrates that FCS diffusion law analysis is a powerful tool to determine membrane heterogeneities implied from dynamics measurements. Our results corroborate the commonly accepted interpretations of imaging FCS diffusion law analysis, and we show that exceptions happen when domains reach the percolation threshold in a biphasic membrane and a network of domains behaves rather like a meshwork, resulting in hop diffusion. In cell extrusion, a cell embedded in an epithelial monolayer loses its apical or basal surface and is subsequently squeezed out of the monolayer by neighboring cells. Cell extrusions occur during apoptosis, epithelial-mesenchymal transition, or precancerous cell invasion. They play important roles in embryogenesis, homeostasis, carcinogenesis, and many other biological processes. Although many of the molecular factors involved in cell extrusion are known, little is known about the mechanical basis of cell extrusion. We used a three-dimensional (3D) vertex model to investigate the mechanical stability of cells arranged in a monolayer with 3D foam geometry. We found that when the cells composing the monolayer have homogeneous mechanical properties, cells are extruded from the monolayer when the symmetry of the 3D geometry is broken because of an increase in cell density or a decrease in the number of topological neighbors around single cells. Those results suggest that mechanical instability inherent in the 3D foam geometry of epithelial monolayers is sufficient to drive epithelial cell extrusion. In the situation in which cells in the monolayer actively generate contractile or adhesive forces under the control of intrinsic genetic programs, the forces act to break the symmetry of the monolayer, leading to cell extrusion that is directed to the apical or basal side of the monolayer by the balance of contractile and adhesive forces on the apical and basal sides. Although our analyses are based on a simple mechanical model, our results are in accordance with observations of epithelial monolayers in vivo and consistently explain cell extrusions under a wide range of physiological and pathophysiological conditions. Our results illustrate the importance of a mechanical understanding of cell extrusion and provide a basis by which to link molecular regulation to physical processes. In this study, we investigated the conversion of lipid bicelles into vesicles in the case of a system composed of the phospholipid 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and the saponin glycyrrhizin in the presence of sucrose. Glycyrrhizin is a biosurfactant present in the licorice root and possesses a triterpenic hydrophobic backbone and a hydrophilic headgroup built from two sugar molecules. The aim of this study is to determine the initial bicelle size at temperatures below the lipid's main phase transition temperature Tm and, based on these results, characteristics of the temperature-induced bicelle-to-vesicle transition. Moreover, the influence of the heating rate on this transition is followed. https://www.selleckchem.com/products/trastuzumab-emtansine-t-dm1-.html The general picture concluded from photon correlation spectroscopy and small angle X-ray scattering was confirmed by additional imaging with cryogenic transmission electron microscopy. Small angle X-ray scattering was especially used to determine size parameters of the existing structures. To enhance the contrast for X-rays, a buffer containing 25 wt% sucrose was used.