https://www.selleckchem.com/products/cb1954.html Laser annealing is a competitive alternative to conventional oven annealing of block copolymer (BCP) thin films enabling rapid acceleration and precise spatial control of the self-assembly process. Localized heating by a moving laser beam (zone annealing), taking advantage of steep temperature gradients, can additionally yield aligned morphologies. In its original implementation it was limited to specialized germanium-coated glass substrates, which absorb visible light and exhibit low-enough thermal conductivity to facilitate heating at relatively low irradiation power density. Here, we demonstrate a recent advance in laser zone annealing, which utilizes a powerful fiber-coupled near-IR laser source allowing rapid BCP annealing over a large area on conventional silicon wafers. The annealing coupled with photothermal shearing yields macroscopically aligned BCP films, which are used as templates for patterning metallic nanowires. We also report a facile method of transferring laser-annealed BCP films onto arbitrary surfaces. The transfer process allows patterning substrates with a highly corrugated surface and single-step rapid fabrication of multilayered nanomaterials with complex morphologies.A biodegradable coronary stent is expected to eliminate the adverse events of an otherwise eternally implanting material after vessel remodeling. Both biocorrodible metals and biodegradable polymers have been tried as the matrix of the new-generation stent. Herein, we utilized a metal-polymer composite material to combine the advantages of the high mechanical strength of metals and the adjustable degradation rate of polymers to prepare the biodegradable stent. After coating polylactide (PLA) on the surface of iron, the degradation of iron was accelerated significantly owing to the decrease of local pH resulting from the hydrolysis of PLA, etc. We implanted the metal-polymer composite stent (MPS) into the porcine artery and examin