The detection of product defects is essential in quality control in manufacturing. This study surveys stateoftheart deep-learning methods in defect detection. First, we classify the defects of products, such as electronic components, pipes, welded parts, and textile materials, into categories. Second, recent mainstream techniques and deep-learning methods for defects are reviewed with their characteristics, strengths, and shortcomings described. Third, we summarize and analyze the application of ultrasonic testing, filtering, deep learning, machine vision, and other technologies used for defect detection, by focusing on three aspects, namely method and experimental results. To further understand the difficulties in the field of defect detection, we investigate the functions and characteristics of existing equipment used for defect detection. The core ideas and codes of studies related to high precision, high positioning, rapid detection, small object, complex background, occluded object detection and object association, are summarized. Lastly, we outline the current achievements and limitations of the existing methods, along with the current research challenges, to assist the research community on defect detection in setting a further agenda for future studies.We employ the recently introduced generalized microcanonical inflection point method for the statistical analysis of phase transitions in flexible and semiflexible polymers and study the impact of the bending stiffness upon the character and order of transitions between random-coil, globules, and pseudocrystalline conformations. The high-accuracy estimates of the microcanonical entropy and its derivatives required for this study were obtained by extensive replica-exchange Monte Carlo simulations. We observe that the transition behavior into the compact phases changes qualitatively with increasing bending stiffness. Whereas the Θ collapse transition is less affected, the first-order liquid-solid transition characteristic for flexible polymers ceases to exist once bending effects dominate over attractive monomer-monomer interactions.Reproductive health is compromised during anorexia nervosa (AN). However, it is still unclear whether this medical complication is reversible after recovery from AN. The purpose of this paper was to conduct a systematic review of the major reproductive health outcomes in females after recovery from AN. The review was conducted in adherence to preferred reporting items for systematic review and meta-analyses (PRISMA) guidelines. Data were collated using meta-analysis and a narrative approach. Of the 1186 articles retrieved, five studies met the inclusion criteria and were reviewed. These studies monitored weight-restored females who had recovered from AN for a follow-up period of between six and 18 years. Their narrative analysis revealed that appropriate treatment of AN leads to the normalization of reproductive function, especially in terms of fertility, pregnancy, and childbirth rates. The meta-analysis confirmed this finding, where the pooled odds of childbirth rates between the AN group and the general population was not statistically significant (OR = 0.75, 95% CI 0.43-1.29, p = 0.41). We conclude that if patients undergo appropriate eating-disorder treatment and weight restoration, it appears to be unlikely that reproductive health is affected by AN. However, since this finding is derived from only a few studies, it requires replication and confirmation.The development of products for topical applications requires analyses of their skin effects before they are destined for the market. At present, the ban on animal use in several tests makes the search for in vitro models (such as artificial skin) necessary to characterize the risks involved. In this work, tissue engineering concepts were used to manufacture collagen-free three-dimensional scaffolds for cell growth and proliferation. Two different human skin models-reconstructed human epidermis and full-thickness skin-were developed from electrospun scaffolds using synthetic polymers such as polyethylene terephthalate, polybutylene terephthalate, and nylon 6/6. After the construction of these models, their histology was analyzed by H&E staining and immunohistochemistry. The results revealed a reconstructed epidermal tissue, duly stratified, obtained from the nylon scaffold. In this model, the presence of proteins involved in the epidermis stratification process (cytokeratin 14, cytokeratin 10, involucrin, and loricrin) was confirmed by immunohistochemistry and Western blot analysis. The nylon reconstructed human epidermis model's applicability was evaluated as a platform to perform irritation and corrosion tests. Our results demonstrated that this model is a promising platform to assess the potential of dermal irritation/corrosion of chemical products.Adipose tissue-derived stem cells (ADSCs) are pluripotent mesenchymal stem cells found in relatively high percentages in the adipose tissue and able to self-renew and differentiate into many different types of cells. "Extracellular vesicles (EVs), small membrane vesicular structures released during cell activation, senescence, or apoptosis, act as mediators for long distance communication between cells, transferring their specific bioactive molecules into host target cells". https://www.selleckchem.com/products/kribb11.html There is a general consensus on how to define and isolate ADSCs, however, multiple separation and characterization protocols are being used in the present which complicate the results' integration in a single theory on ADSCs' and their derived factors' way of action. Metabolic syndrome and type 2 diabetes mellitus (T2DM) are mainly caused by abnormal adipose tissue size, distribution and metabolism and so ADSCs and their secretory factors such as EVs are currently investigated as therapeutics in these diseases. Moreover, due to their relatively easy isolation and propagation in culture and their differentiation ability, ADSCs are being employed in preclinical studies of implantable devices or prosthetics. This review aims to provide a comprehensive summary of the current knowledge on EVs secreted from ADSCs both as diagnostic biomarkers and therapeutics in diabetes and associated cardiovascular disease, the molecular mechanisms involved, as well as on the use of ADSC differentiation potential in cardiovascular tissue repair and prostheses.