https://www.selleckchem.com/products/raptinal.html Spinal cord injury (SCI) induces a secondary degenerative response that causes the loss of spared axons and worsens neurological outcome. The complex molecular mechanisms that mediate secondary axonal degeneration remain poorly understood. To further our understanding of secondary axonal degeneration following SCI, we assessed the spatiotemporal dynamics of axonal spheroid and terminal bulb formation following a contusive SCI in real-time in vivo. Adult 6-8 week old Thy1YFP transgenic mice underwent a T12 laminectomy for acute imaging sessions or were implanted with a custom spinal cord imaging chamber for chronic imaging of the spinal cord. Two-photon excitation time-lapse microscopy was performed prior to a mild contusion SCI (30 kilodyne, IH Impactor) and at 1-4 h and 1-14 days post-SCI. We quantified the number of axonal spheroids, their size and distribution, the number of endbulbs, and axonal survival from 1 h to 14 days post-SCI. Our data reveal that the majority of axons underwent swelling and axonal portant insight into both degenerative and recoverable responses of axons following contusive SCI in real-time. Understanding how axons spontaneously recover after SCI will be an important avenue for future SCI research and may help guide future clinical trials. BACKGROUND Severe peripheral nerve injury leads to skeletal muscle atrophy and impaired limb function that is not sufficiently improved by existing treatments. Fibroblast growth factor 6 (FGF6) is involved in tissue regeneration and is dysregulated in denervated rat muscles. However, the way that FGF6 affects skeletal muscle repair after peripheral nerve injury has not been fully elucidated. METHODS In this study, we investigated the role of FGF6 in the regeneration of denervated muscles using myoblast cells and an in vivo model of peripheral nerve injury. RESULTS FGF6 promoted the viability and migration of C2C12 and primary myoblasts in a dose-dependen