The transient receptor potential (TRP) cation channels are present in abundance across the gastrointestinal (GI) tract, serving as detectors for a variety of stimuli and secondary transducers for G-protein coupled receptors. The activation of TRP channels triggers neurogenic inflammation with related neuropeptides and initiates immune reactions by extra-neuronally regulating immune cells, contributing to the GI homeostasis. However, under pathological conditions, such as inflammatory bowel disease (IBD), TRP channels are involved in intestinal inflammation. An increasing number of human and animal studies have indicated that TRP channels are correlated to the visceral hypersensitivity (VHS) and immune pathogenesis in IBD, leading to an exacerbation or amelioration of the VHS or intestinal inflammation. Thus, TRP channels are a promising target for novel therapeutic methods for IBD. In this review, we comprehensively summarize the functions of TRP channels, especially their potential roles in immunity and IBD. Additionally, we discuss the contradictory findings of prior studies and offer new insights with regard to future research. Copyright © 2020 Chen, Mu, Zhu, Mukherjee and Zhang.MicroRNAs (miRNAs) are small non-coding RNA molecules that regulate important intracellular biological processes. In myasthenia gravis (MG), a disease-specific pattern of elevated circulating miRNAs has been found, and proposed as potential biomarkers. These elevated miRNAs include miR-150-5p, miR-21-5p, and miR-30e-5p in acetylcholine receptor antibody seropositive (AChR+) MG and miR-151a-3p, miR-423-5p, let-7a-5p, and let-7f-5p in muscle-specific tyrosine kinase antibody seropositive (MuSK+) MG. In this study, we examined the regulation of each of these miRNAs using chromatin immunoprecipitation sequencing (ChIP-seq) data from the Encyclopedia of DNA Elements (ENCODE) to gain insight into the transcription factor pathways that drive their expression in MG. Our aim was to look at the transcription factors that regulate miRNAs and then validate some of those in vivo with cell lines that have sufficient expression of these transcription factors This analysis revealed several transcription factor families that the AChR+-specific miRNAs miR-21-5p and miR-30e-5p into exosomes, suggesting a possible mechanism for the elevation of these miRNAs in MG patient serum. In conclusion, our study summarizes the regulatory transcription factors that drive expression of AChR+ and MuSK+ MG-associated miRNAs. Our findings of elevated miR-21-5p and miR-30e-5p expression in immune cells upon inflammatory stimulation and the suppressive effect of corticosteroids strengthens the putative role of these miRNAs in the MG autoimmune response. Copyright © 2020 Fiorillo, Heier, Huang, Tully, Punga and Punga.There are several unmet needs in modern immunology. Among them, vaccines against parasitic diseases and chronic infections lead. https://www.selleckchem.com/products/sodium-l-lactate.html Trypanosoma cruzi, the causative agent of Chagas disease, is an excellent example of a silent parasitic invasion that affects millions of people worldwide due to its progression into the symptomatic chronic phase of infection. In search for novel vaccine candidates, we have previously introduced Traspain, an engineered trivalent immunogen that was designed to address some of the known mechanisms of T. cruzi immune evasion. Here, we analyzed its performance in different DNA prime/protein boost protocols and characterized the systemic immune response associated with diverse levels of protection. Formulations that include a STING agonist, like c-di-AMP in the boost doses, were able to prime a Th1/Th17 immune response. Moreover, comparison between them showed that vaccines that were able to prime polyfunctional cell-mediated immunity at the CD4 and CD8 compartment enhanced protection levels in the murine model. These findings contribute to a better knowledge of the desired vaccine-elicited immunity against T. cruzi and promote the definition of a vaccine correlate of protection against the infection. Copyright © 2020 Sanchez Alberti, Bivona, Matos, Cerny, Schulze, Weißmann, Ebensen, González, Morales, Cardoso, Cazorla, Guzmán and Malchiodi.In a previous study, we have reported an increased plasma midkine (MK) and pleiotrophin (PTN) concentrations in patients with systemic lupus erythematosus (SLE) and the increase in MK and PTN associated with inflammatory cytokines interleukin (IL)-17 level and some clinical manifestations, suggesting the underlying association of MK and PTN with SLE. This study was conducted to investigate the association between common single-nucleotide polymorphisms (SNPs) in the MK and PTN gene and SLE susceptibility. A total of 989 subjects (496 SLE patients and 493 healthy controls) were included and genotyped for three MK SNPs and seven PTN SNPs in using improved multiple ligase detection reaction (iMLDR). Results have demonstrated no significant differences for genotype and allele frequencies in all 10 SNPs between SLE patients and healthy controls. Case-only analysis in SLE revealed that, in MK gene, the genotype frequency of AA/AG (rs35324223) was significantly lower in patients with photosensitivity than those without; the allele frequency of A/G (rs20542) was significantly higher in patients without serositis. In PTN gene, the A/G allele frequency (rs322236), C/T allele frequency, and TT/CT genotype frequency (rs6970141) showed significantly increased results in patients with immunological disorder compared to those without. Furthermore, no significant differences in plasma MK and PTN concentrations with its SNPs genotypes were found. MK and PTN SNPs showed no associations with SLE genetic susceptibility, but it may be associated with the course of this disease; further studies are needed to focus on the mechanism of MK and PTN genes in the pathogenesis of SLE. Copyright © 2020 Wang, Mao, Zhao, Wang, Li, Ye and Pan.Recent years have seen an unprecedented rise in the incidence of multidrug-resistant (MDR) Gram-negative bacteria (GNBs) such as Acinetobacter and Klebsiella species. In view of the shortage of novel drugs in the pipeline, alternative strategies to prevent, and treat infections by GNBs are urgently needed. Previously, we have reported that the Candida albicans hypha-regulated protein Hyr1 shares striking three-dimensional structural homology with cell surface proteins of Acinetobacter baumannii. Moreover, active vaccination with rHyr1p-N or passive immunization with anti-Hyr1p polyclonal antibody protects mice from Acinetobacter infection. In the present study, we use molecular modeling to guide design of monoclonal antibodies (mAbs) generated against Hyr1p and show them to bind to priority surface antigens of Acinetobacter and Klebsiella pneumoniae. The anti-Hyr1 mAbs block damage to primary endothelial cells induced by the bacteria and protect mice from lethal pulmonary infections mediated by A. baumannii or K.