Lead shielding is commonly used in the delivery of superficial radiotherapy albeit that the toxicity of this substance is of concern. The feasibility of using a non-toxic alternative, AttenuFlex™, is assessed using Xstrahl and Sensus treatment units. A series of lead and AttenuFlex™ circular cut outs and applicators were used with superficial beams (1.0-8.5 mm Al HVL) to measure percentage depth dose (PDD), output factors (OF) and surface dose correction factors (DCF). X-ray transmission for each material was determined for each beam quality. For these measurements an Advanced Markus chamber either embedded within a virtual water phantom (PDD, OF, transmission) or placed on the surface of the phantom with entrance window downstream (DCF), was used. The depth of the phantom is 10 cm for PDD and surface OF measurements. DCF(t) measurements were obtained with underlying lead or AttenuFlex™ at depth t = 0.1-10 cm. Additionally, using EBT3 film fluorescent surface doses, to non-target tissue, due to underlying lead or AttenuFlex™ were compared. PDDs and OFs for both materials were within ± 1%. Lead and AttenuFlex™ transmission differences were clinically acceptable, all transmission values were less then  5% and non-target doses were comparable. The variation of DCF(t) for lead and AttenuFlex™ exhibit a minima for all beams. In the minima region energy and applicator dependent differences between DCF(lead) and DCF(AttenuFlex™) are observed. These differences do not preclude the use of AttenuFlex™ as an alternative to lead in superficial therapy.The compounds bearing naphthalene moiety can be used as medical preparations because of their wide spectrum of biological activity and low toxicity. In this study, a new series of azoles or azines were synthesized from the reaction of the key intermediate 1-(1-hydroxynaphthalen-2-yl)-3-phenylpropane-1,3-dione 3 with a variety of electrophilic and nucleophilic reagents under a variety of mild conditions. The chemical structures of these compounds were confirmed by various spectroscopic methods such as (IR, 1H-NMR, 13C-NMR, mass spectra and elemental analyses). The prepared compounds were screened in vitro for their anti-microbial activity against some species of Gram-positive bacteria (Staphylococcus aureus and Bacillus subtilis) and Gram-negative bacteria (Escherichia coli and Pseudomonas aeuroginosa). Anti-fungal activities of the compounds were tested against yeast and mycelial fungi,Candida albicans and Aspergillus flavus. The antimicrobial activity of this series was showed either weak or moderate activities.The pandemic outbreak of coronavirus (SARS-CoV-2) is rapidly spreading across the globe, so the development of anti-SARS-CoV-2 agents is urgently needed. Angiotensin-converting enzyme 2 (ACE-2), a human receptor that facilitates entry of SARS-CoV-2, serves as a prominent target for drug discovery. In the present study, we have applied the bioinformatics approach for screening of a series of bioactive chemical compounds from Himalayan stinging nettle (Urtica dioica) as potent inhibitors of ACE-2 receptor (PDB ID 1R4L). The molecular docking was applied to dock a set of representative compounds within the active site region of target receptor protein using 0.8 version of the PyRx virtual screen tool and analyzed by using discovery studio visualizer. Based on the highest binding affinity, 23 compounds were shortlisted as a lead molecule using molecular docking analysis. Among them, β-sitosterol was found with the highest binding affinity - 12.2 kcal/mol and stable interactions with the amino acid residues present on the active site of the ACE-2 receptor. Similarly, luteoxanthin and violaxanthin followed by rutin also displayed stronger binding efficiency. We propose these compounds as potential lead candidates for the development of target-specific therapeutic drugs against COVID-19.Histidine decarboxylase (HDC), a histamine synthase, is expressed in various hematopoietic cells and is induced by hematopoietic cytokines such as granulocyte colony-stimulating factor (G-CSF). We previously showed that nitrogen-containing bisphosphonate (NBP)-treatment induces extramedullary hematopoiesis via G-CSF stimulation. However, the function of HDC in NBP-induced medullary and extramedullary hematopoiesis remains unclear. Here, we investigated changes in hematopoiesis in wild-type and HDC-deficient (HDC-KO) mice. NBP treatment did not induce anemia in wild-type or HDC-KO mice, but did produce a gradual increase in serum G-CSF levels in wild-type mice. NBP treatment also enhanced Hdc mRNA expression and erythropoiesis in the spleen and reduced erythropoiesis in bone marrow and the number of vascular adhesion molecule 1 (VCAM-1)-positive macrophages in wild-type mice, as well as increased the levels of hematopoietic progenitor cells and proliferating cells in the spleen and enhanced expression of bone morphogenetic protein 4 (Bmp4), CXC chemokine ligand 12 (Cxcl12), and hypoxia inducible factor 1 (Hif1) in the spleen. However, such changes were not observed in HDC-KO mice. These results suggest that histamine may affect hematopoietic microenvironments of the bone marrow and spleen by changing hematopoiesis-related factors in NBP-induced extramedullary hematopoiesis.Vaccinia virus (VACV) belonging to the poxvirus family enters the host cell via two different entry pathways; either endocytosis or virus/host cell membrane fusion. With respect to the virus/host cell membrane fusion, there are eleven viral membrane proteins forming a complicated entry-fusion complex (EFC), including A28, A21, A16, F9, G9, G3, H2, J5, L5, L1 and O3, to conduct the fusion function. These EFC components are highly conserved in all poxviruses and each of them is essential and necessary for the fusion activity. So far, with the exceptions of L1 and F9 whose crystal structures were reported, the structural information about other EFC components remains largely unclear. We aim to conduct a structural and functional investigation of VACV virus-entry membrane protein A28. In this work, we expressed and purified a truncated form of A28 (14 kDa; residues 38-146, abbreviated as tA28 hereinafter), with deletion of its transmembrane domain (residues 1-22) and a hydrophobic segment (residues 23-37). https://www.selleckchem.com/products/AP24534.html And the assignments of its backbone and side chain 1H, 13C and 15N chemical shifts of tA28 are reported.