Manganese (Mn) is demonstrated to be essential for plants. Ion homeostasis is maintained in plant cells by specialized transporters. PbMTP8.1, which encodes a putative Mn-CDF transporter in Pyrus bretschneideri Rehd, was expressed mainly in leaves and complemented the Mn hypersensitivity of the Mn-sensitive yeast mutant △pmr1 in previous research conducted by our laboratory. In the present study, we report that the expression of PbMTP8.1 can enhance Mn tolerance and accumulation in Saccharomyces cerevisiae. Subcellular localization analysis of the PbMTP8.1-GFP fusion protein indicated that PbMTP8.1 was targeted to the pre-vacuolar compartment (PVC). In addition, the overexpression of PbMTP8.1 in Arabidopsis thaliana conferred increased resistance to plants under toxic Mn levels, as indicated by increased fresh and dry weights of shoots and roots. Mn accumulation in vacuoles of PbMTP8.1-overexpressing plants was significantly increased when compared with that in wild-type plants under Mn stress. This suggests that a considerable proportion of Mn enters into the vacuoles through a PbMTP8.1-dependent mechanism. Taken together, these results indicate PbMTP8.1 is a Mn-specific transporter that is localized to the PVC, and confers Mn tolerance by sequestering Mn into the vacuole.Human exposure to mercury is a major public health concern, causing neurological outcomes such as motor and visual impairment and learning disabilities. Currently, human exposure in the Amazon is among the highest in the world. A recent systematic review (doi10.1016/j.jtemb.2018.12.001), however, highlighted the lack of high-quality studies on mercury-associated neurotoxicity. There is, therefore, a need to improve research and much to still learn about how exposure correlates with disease. In this review, we discuss studies evaluating the associations between neurological disturbances and mercury body burden in Amazonian populations, to generate recommendations for future studies. A systematic search was performed during July 2020, in Pubmed/Medline, SCOPUS and SCIELO databases with the terms (mercury*) and (Amazon*). Four inclusion criteria were used original article (1), with Amazonian populations (2), quantifying exposure (mercury levels) (3), and evaluating neurological outcomes (4). The extracted data included characteristics (as year or origin of authorship) and details of the research (as locations and type of participants or mercury levels and neurological assessments). Thirty-four studies, most concentrated within three main river basins (Tapajós, Tocantins, and Madeira) and related to environmental exposure, were found. Mercury body burden was two to ten times higher than recommended and main neurological findings were cognitive, vision, motor, somatosensory and emotional deficits. Important insights are described that support novel approaches to researching mercury exposure and intoxication, as well as prevention and intervention strategies. As a signatory country to the Minamata Convention, Brazil has the opportunity to play a central role in improving human health and leading the research on mercury intoxication.The wastewater utilization for irrigation purposes is common practice in peri-urban areas located in vicinity of developed cities. This water contains elements like chromium (Cr), nickel (Ni), cadmium (Cd) and nitrate (NO3-N) that poses health risk when exposed to human. In this study effect of wastewater irrigation from Chakara wastewater plant, Faisalabad on growth of wheat and health risks was assessed. Pot experiment was conducted at Institute of Soil and Environmental, University of Agriculture, Faisalabad using different concentration of wastewater as treatment 100% tap water, 25% wastewater + 75% tap water, 50% wastewater + 50% tap water, 75% wastewater + 25% tap water, 100% wastewater. The results indicated that the wastewater irrigation negatively effects the plant growth and physiological parameters. The minimum plant height, grain weight, spike length, osmotic potential and SPAD values were recorded 50.33 cm, 1.47 g plant-1, 7.00 cm, 423 and 38.91 respectively in 100% wastewater irrigation. The risk quotient (RQ TEs) for each toxic element and cumulative risk index (RI TEs) values were calculated. The cadmium risk quotient (Cd RQ) for adults was on margin and value was >1 for in 75% wastewater + 25% tap water and 100% wastewater irrigation, while the RQ for Ni and Cr was less then 1. Maximum RI TEs values calculated in 100% wastewater irrigation 0.424 and 0.294 for children and adults respectively. https://www.selleckchem.com/products/MLN8237.html Hence it was concluded that wastewater irrigation significantly increased the accumulation rate of metals and nitrate in wheat and cause potential health risks for children and adults.Phytotoxicity and accumulation of Cu in mature and young leaves of submerged macrophyte Hydrilla verticillata (L.f.) Royle were investigated by analyzing the chlorophyll contents, chloroplast ultrastructure and leaf surface structure under different Cu treatments (0, 0.01, 0.05 and 0.1 f mg L-1). The results showed that 0.05 and 0.1 mg L-1 Cu treatment decreased the contents of Chl a and Chl b, and caused damage on leaf surface structure and chloroplast ultrastructure compared with control (0 mg L-1 Cu treatment). Higher concentration of Cu induced Chlorophyll decreases and the damages on the leaf surface structure and chloroplast ultrastructure were more pronounced in mature than in young leaves. It was observed that leaf Cu concentration increased almost linearly with exposure time and majority of the Cu accumulated in the cell walls. Among different cell wall fractions, the majority of Cu accumulated in cell walls was bound to the hemicellulose 1 and cellulose, followed by the pectin, hemicellulose 2. Mature leaves had significantly higher the concentrations of total Cu and bound-Cu in cell walls due to higher uronic acid content in their cell wall fractions (pectin, hemicellulose 1 and cellulose) than young leaves. Distinct cell wall composition might partially contribute to the different Cu toxicity and accumulation between mature and young leaves of submerged macrophyte H. verticillata. Our results show that mature leaves are more efficient in the uptake and accumulation of Cu than young leaves, which might explain why mature leaves sustain more severe damage.