https://www.selleckchem.com/products/nx-2127.html Herein, a total of more than 300 compounds from 13 Phellinus species and their isolation, characterization, chemistry, pharmacological activities, and relevant molecular mechanisms are comprehensively summarized.In order to gain a better insight into pesticide and pollutant exposure in forests, a rapid and sensitive gas chromatography-tandem mass spectrometry (GC-MS/MS) method for the determination of 208 pesticide residues in leaves and needles has been established. The modified QuEChERS (quick, easy, cheap, effective, rugged and safe) approach uses 2 g of homogenized sample, acetonitrile and water as extraction agents, combined with citrate buffer for the following salting out step. The limits of quantification (LOQs) were determined to 0.0025-0.05 mg kg-1, respectively. Calibration curves showed a linear range between the respective LOQ and 1.0 mg kg-1 with coefficients of determination (R2) ≥ 0.99 for all analyzed pesticides. The recovery rates ranged from 69.7% to 92.0% with a relative standard deviation below 20%. The analysis of beech leaves, spruce and pine needles (each n = 3) provided a proof of concept for the developed methodology and revealed the presence of six pesticide residues (boscalid, epoxiconazole, fenpropimorph, lindane, terbuthylazine, terbuthylazine-desethyl). The results underline the strong need for systematic surveillance of the uncontrollable exposure of pesticides to nature.In this study, gold-platinum nanoparticles (Au@PtNPs) with peroxidase-like activity were synthesized. In the absence of thiourea (TU), the Au@PtNPs can catalyze the decomposition of hydrogen peroxide, and oxidize 3,3',5,5'-tetramethylbenzidine dihydrochloride (TMB, colorless) into oxidized 3,3',5,5'-tetramethylbenzidine dihydrochloride (oxTMB, blue). The peroxidase-like activity of the Au@PtNPs is inhibited in the presence of TU, and TMB cannot be oxidized to oxTMB effectively, and no blue color could be observed. Base