https://www.selleckchem.com/ Recent discoveries have underscored the cross-talk between intestinal microbes and their hosts. Notably, intestinal microbiota impacts the development, physiological function and social behavior of hosts. This influence usually revolves around the microbiota-gut-brain axis (MGBA). In this review, we firstly outline the impacts of the host on colonization of intestinal microorganisms, and then highlight the influence of intestinal microbiota on hosts focusing on short-chain fatty acid (SCFA) and tryptophan metabolite-mediated MGBA. We also discuss the intervention of intestinal microbial metabolism by dietary supplements, which may provide new strategies for improving the welfare and production of pigs. Overall, we summarize a state-of-the-art theory that gut microbiome affects brain functions via metabolites from dietary macronutrients.In recent years, many studies have shown that the intestinal microflora has various effects that are linked to the critical physiological functions and pathological systems of the host. The intestinal microbial community is widely involved in the metabolism of food components such as protein, which is one of the essential nutrients in diets. Additionally, dietary protein/amino acids have been shown to have had a profound impact on profile and operation of gut microbiota. This review summarizes the current literature on the mutual interaction between intestinal microbiota and protein/amino acid metabolism for host mucosal immunity and health.It has been well recognized that interactions between the gut microbiota and host-metabolism have a proven effect on health. The gut lumen is known for harboring different bacterial communities. Microbial by-products and structural components, which are derived through the gut microbiota, generate a signaling response to maintain homeostasis. Gut microbiota is not only involved in metabolic disorders, but also participates in the regulation of reproductive hormonal func