Gouty arthritis as well as open-angle glaucoma risk inside a experienced human population. Electro-optical detection has proven to be a valuable technique to study temporal profiles of THz pulses with pulse durations down to femtoseconds. As the Coulomb field around a relativistic electron bunch resembles the current profile, electro-optical detection can be exploited for non-invasive bunch length measurements at accelerators. We have developed a very compact and robust electro-optical detection system based on spectral decoding for single-shot longitudinal bunch profile monitoring at the European X-ray Free Electron Laser (XFEL) for electron bunch lengths down to 200 fs (rms). Apart from the GaP crystal and the corresponding laser optics at the electron beamline, all components are housed in 19 in. chassis for rack mount and remote operation inside the accelerator tunnel. An advanced laser synchronization scheme based on radio-frequency down-conversion has been developed for locking a custom-made Yb-fiber laser to the radio-frequency of the European XFEL accelerator. In order to cope with the high bunch repetition rate of the superconducting accelerator, a novel linear array detector has been employed for spectral measurements of the Yb-fiber laser pulses at frame rates of up to 2.26 MHz. In this paper, we describe all sub-systems of the electro-optical detection system as well as the measurement procedure in detail and discuss the first measurement results of longitudinal bunch profiles of around 400 fs (rms) with an arrival-time jitter of 35 fs (rms).The standard 1X ISIS negative Penning surface plasma source has reliably produced an H- beam for ISIS operations for 35 years. In order to meet the 60 mA, 2 ms, and 50 Hz beam current and duty cycle required for the front end test stand (Letchford et al., in Proceedings of IPAC2015, Richmond, VA, USA, 2015), a 2X scaled source has been developed [Faircloth et al., AIP Conf. https://www.selleckchem.com/Bcl-2.html Proc. 2052, 050004 (2018)]. The 2X source has a plasma chamber twice the linear dimensions of the 1X source. https://www.selleckchem.com/Bcl-2.html This paper investigates the comparison between different emission areas (plasma electrode aperture dimensions) for both the 1X and 2X sources. Slit and circular extraction schemes are studied. A 3D Child-Langmuir relationship is observed where the space charge limited current density depends on the aspect ratio of the extraction aperture.Performing time- and angle-resolved photoemission (tr-ARPES) spectroscopy at high momenta necessitates extreme ultraviolet laser pulses, which are typically produced via high harmonic generation (HHG). Despite recent advances, HHG-based setups still require large pulse energies (from hundreds of μJ to mJ) and their energy resolution is limited to tens of meV. Here, we present a novel 11 eV tr-ARPES setup that generates a flux of 5 × 1010 photons/s and achieves an unprecedented energy resolution of 16 meV. It can be operated at high repetition rates (up to 250 kHz) while using input pulse energies down to 3 µJ. We demonstrate these unique capabilities by simultaneously capturing the energy and momentum resolved dynamics in two well-separated momentum space regions of a charge density wave material ErTe3. This novel setup offers the opportunity to study the non-equilibrium band structure of solids with exceptional energy and time resolutions at high repetition rates.Conventional thermionic microwave and radio frequency (RF) guns can offer high average beam current, which is important for synchrotron light and terahertz (THz) radiation source facilities, as well as for industrial applications. For example, the Advanced Photon Source at Argonne National Laboratory is a national synchrotron-radiation light source research facility that utilizes thermionic RF guns. However, these existing thermionic guns are bulky, difficult to handle and install, easily detuned, very sensitive to thermal expansion, and due for a major upgrade and replacement. In this paper, we present the design of a new, more stable, and reliable gun with optimized electromagnetic performance, improved thermal engineering, and a more robust cathode mounting technique, which is a critical step to improve the performance of existing and future light sources, industrial accelerators, and electron beam-driven THz sources. We will also present a fabricated gun prototype and show results of high-power and beam tests.Measurements of the thermal transport properties of biological fluids and tissues are important for biomedical applications such as thermal diagnostics and thermal therapeutics. Here, we describe a microscale thermoreflectance sensor to measure the thermal effusivity of fluids and biological samples in a minimally invasive manner. The sensor is based on ultrafast optical pump-probe techniques and employs a metal-coated optical fiber as both a photonic waveguide and a local probe. Calibration of the sensor with five liquids shows that the percentage deviation between experimentally measured effusivity and literature values is on average less then 3%. We further demonstrate the capability of the sensor by measuring the thermal effusivity of vegetable oil, butter, pork liver, and quail egg white and yolk. We relate the thermal effusivity of the samples to their composition and water content, and establish our technique as a powerful and flexible method for studying the local thermal transport properties of biological materials.A multicusp-free external antenna based radio frequency (RF) negative hydrogen (H-) ion source was developed to produce 16 mA of H- ion current at -50 kVDC accelerating voltage operated with a pulse width of 2 ms at 2 Hz repetition rate. A pulsed RF igniter system is devised for generating the initial electron and ion pairs required to generate the main plasma in the pulsed mode. This pulsed RF igniter reliably starts ignition with a hydrogen gas flow rate in the range of 18-50 standard cubic centimeter per minute (SCCM). This system eliminates the need of igniter in continuous operation although it is operated in low power mode. This source operating at a low average power and without any moving parts can be expected to have a superior lifetime. This paper describes the development and operational characteristics of the pulsed RF ignited H- ion source.