https://www.selleckchem.com/products/LY294002.html Diagnostic value of static posturography depends on its methodological features, measurement properties, and on computational methods that extract meaningful information from the postural sway i.e. the center-of-pressure (CoP) displacements. In this study, we assessed the reliability and robustness of the postural system based on the optimization properties of the CoP signal descending, local and global stability, and convergence. For the analysis, we used CoP data from 146 participants (104 [71%] female, age 46 ± 23 years, body mass index 23.6 ± 3.4 kg/m2) recorded while standing quietly on a foam surface without visual input. Reliability was estimated using the intraclass correlation coefficient from a single (ICC2,1) and averaged (ICC2,3) measurements. Robustness was assessed through main and interaction effects for the signal duration (60, 30 s), sampling frequency (100, 50 Hz), and lowpass filtering cutoff frequency (10, 5 Hz). The observed reliability depended on the use of average or single measurements as it was excellent for the stability property (ICC2,k ≥ 0.772); excellent-to-acceptable (ICC2,3 ≥ 0.540) or excellent-to-unacceptable (ICC2,1 ≥ 0.281) for the descending property; and excellent-to-unacceptable (ICC2,3 > 0.295; ICC2,1 > 0.122) for the convergence property. Robustness analysis showed large main effects of signal duration (ω2 ≤ 0.834, p less then 0.001), sampling frequency (ω2 ≤ 0.526, p less then 0.001), and the lowpass filter cutoff frequency (ω2 ≤ 0.523, p less then 0.001) on the optimization properties; but all two-way and three-way effects varied from medium to trivial. Reliability is thus excellent to acceptable for deriving the descending, stability, and convergence properties from the average of three measurements. Those optimization properties are robust to the interaction but not the main effects of methodological sources of variation of posturography. Real-time health monitoring syste