https://www.selleckchem.com/products/otx015.html albopictus, which not only provides a reference for the further elucidation of the evolutionarily conserved role of dsx in Ae. albopictus sexual differentiation but also reveals potential molecular targets for application to the development of sterile male mosquitoes to be released for vector control. © 2020 Society of Chemical Industry. Our results suggest that both Vg and VgR are direct target genes of Aalbdsx and that direct regulation of Aalbdsx on VgR is indispensable for ovarian development in Ae. albopictus, which not only provides a reference for the further elucidation of the evolutionarily conserved role of dsx in Ae. albopictus sexual differentiation but also reveals potential molecular targets for application to the development of sterile male mosquitoes to be released for vector control. © 2020 Society of Chemical Industry.During the last decades intermediate filaments (IFs) have emerged as important regulators of cellular signaling events, ascribing IFs with functions beyond the structural support they provide. The organ and developmental stage-specific expression of IFs regulate cell differentiation within developing or remodeling tissues. Lack of IFs causes perturbed stem cell differentiation in vasculature, intestine, nervous system, and mammary gland, in transgenic mouse models. The aberrant cell fate decisions are caused by deregulation of different stem cell signaling pathways, such as Notch, Wnt, YAP/TAZ, and TGFβ. Mutations in genes coding for IFs cause an array of different diseases, many related to stem cell dysfunction, but the molecular mechanisms remain unresolved. Here, we provide a comprehensive overview of how IFs interact with and regulate the activity, localization and function of different signaling proteins in stem cells, and how the assembly state and PTM profile of IFs may affect these processes. Identifying when, where and how IFs and cell signaling congregate, will expand our unde