In the cubic chiral magnet Cu_2OSeO_3 a low-temperature skyrmion state (LTS) and a concomitant tilted conical state are observed for magnetic fields parallel to ⟨100⟩. Here, we report on the dynamic resonances of these novel magnetic states. After promoting the nucleation of the LTS by means of field cycling, we apply broadband microwave spectroscopy in two experimental geometries that provide either predominantly in-plane or out-of-plane excitation. By comparing the results to linear spin-wave theory, we clearly identify resonant modes associated with the tilted conical state, the gyrational and breathing modes associated with the LTS, as well as the hybridization of the breathing mode with a dark octupole gyration mode mediated by the magnetocrystalline anisotropies. Most intriguingly, our findings suggest that under decreasing fields the hexagonal skyrmion lattice becomes unstable with respect to an oblique deformation, reflected in the formation of elongated skyrmions.This paper studies numerically the solid phase of a system of particles interacting by the exponentially repulsive pair potential, which is a face-centered cubic (fcc) crystal at low densities and a body-centered cubic (bcc) crystal at higher densities [U. R. Pedersen et al., J. Chem. Phys. 150, 174501 (2019)]. Structure is studied via the pair-distribution function and dynamics via the velocity autocorrelation function and the phonon density of states. These quantities are evaluated along isotherms, isochores, and three isomorphs in both crystal phases. Isomorphs are traced out by integrating the density-temperature relation characterizing configurational adiabats, starting from state points in the middle of the fcc-bcc coexistence region. Good isomorph invariance of structure and dynamics is seen in both crystal phases, which is notable in view of the large density variations studied. This is consistent with the fact that the virial potential-energy correlation coefficient is close to unity in the entire fcc phase and in most of the bcc phase (basically below the re-entrant density). Our findings confirm that the isomorph theory, developed and primarily studied for liquids, applies equally well for solids.The infrared (IR) action spectrum of the doubly substituted methyl-ethyl Criegee intermediate (MECI) is observed in the CH stretch overtone region with detection of OH products. The MECI exhibits four conformers, all of which undergo unimolecular decay via a 1,4 H-atom transfer mechanism, followed by the rapid release of OH products. Conformers with different orientations of the carbonyl oxide group with respect to the methyl and ethyl substituents (i.e., anti and syn) decay via distinct transition state barriers (16.1 kcal mol-1 and 15.4 kcal mol-1, respectively). The observed IR action spectrum is in good agreement with the predicted anharmonic IR absorption spectrum, but exhibits significant congestion, which is attributed to couplings between spectroscopic bright states and nearby dark states. Energy-dependent OH appearance rates are measured upon IR excitation of the strongest features in the IR action spectrum and are found to be on the order of 106-107 s-1. The experimental rates are in good agreement with computed Rice-Ramsperger-Kassel-Marcus rates for the unimolecular decay of MECI at these energies, which incorporate quantum mechanical tunneling and sophisticated hindered rotor treatments, as well as high-level theoretical calculations of the TS barrier heights, rovibrational properties, and torsional barriers associated with the MECI conformers. Master equation modeling is used to predict thermal rates for the unimolecular decay of anti- and syn-MECI of 473 s-1 and 660 s-1, respectively. Comparison with other previously studied Criegee intermediate systems provides insights into substituent effects on unimolecular decay under both energy-dependent and thermal conditions.We study experimentally the temperature evolution of the thickness of the interfacial layer, Lint(T), between bulk matrices and the surface of nanoparticles in nanocomposites through broadband dielectric spectroscopy. Analyses revealed a power-law dependence between the logarithm of structural relaxation time in the interfacial layer, τint(T), and the Lint(T) lnτint(T)/τ0∝Lintβ(T)/T, with τ0 ∼ 10-12 s, and β index ∼0.67 at high temperatures and ∼1.7 at temperatures close to the glass transition temperature. In addition, our analysis revealed that the Lint(T) is comparable to the length scale of dynamic heterogeneity estimated from previous nonlinear dielectric measurements and the four-point NMR [ξNMR(T)], with Lint(T) ∼ ξNMR(T). These observations may suggest a direct correlation between the Lint(T) and the size of the cooperatively rearranging regions and have strong implications for understanding the dynamic heterogeneity and cooperativity in supercool liquids and their role in interfacial dynamics.Sampling equilibrium configurations of correlated systems of particles with long relaxation times (e.g., polymeric solutions) using conventional molecular dynamics and Monte Carlo methods can be challenging. This is especially true for systems with complicated, extended bond network topologies and other interactions that make the use and design of specialized relaxation protocols infeasible. We introduce a method based on Brownian dynamics simulations that can reduce the computational time it takes to reach equilibrium and draw decorrelated samples. Importantly, the method is completely agnostic to the particle configuration and the specifics of interparticle forces. In particular, we develop a mobility matrix that excites non-local, collective motion of N particles and can be computed efficiently in O(N) time. Particle motion in this scheme is computed by integrating the overdamped Langevin equation with an Euler-Maruyama scheme, in which Brownian displacements are drawn efficiently using a low-rank representation of the mobility matrix in position and wave space. https://www.selleckchem.com/products/2-deoxy-d-glucose.html We demonstrate the efficacy of the method with various examples from the realm of soft condensed matter and release a massively parallel implementation of the code as a plugin for the open-source package HOOMD-blue [J. A. Anderson et al., J. Comput. Phys. 227, 5342 (2008) and J. Glaser et al., Comput. Phys. Commun. 192, 97 (2015)] which runs on graphics processing units.