Electropositive CSH-AuNCs could be bound to the main nucleating region of amylin via hydrogen bonding and endowed the nanocomplex with more positive net charges (amylin monomer with a positive +26.23 ± 0.80 mV zeta potential), which would inhibit the misfolding and aggregation of amylin via electrostatic repulsion and steric hindrance. In contrast, electronegative MPA-AuNCs could absorb electropositive amylin via strong electrostatic attractions, which accelerated the fibrillation process of amylin via enhancing local concentrations. Moreover, cell experiments showed that both the charged AuNCs had good biocompatibility and electronegetive MPA-AuNCs showed a better protective effect in the amylin-induced cell model than electropositive CSH-AuNCs. These results provide an insight into structure-based nanodrug design for protein conformational diseases.In this paper, a tandem reaction involving copper-catalyzed cross-coupling and allene-mediated cyclization of 1-(2-ethynylaryl)-1,4-disubstituted-1,2,3-triazole with N-tosylhydrazone has been developed. This method features operational simplicity, excellent functional group compatibility, broad substrate scope, and easily available feedstock, providing an efficient and practical strategy for the synthesis of highly functionalized 1,2,3-triazolo[1,5-a]quinolines.The use of nanoparticle reinforced polymer matrices in continuous fiber composites for infrastructure applications requires a comprehensive understanding of viscoelastic creep. Critical parameters affecting the mechanical reinforcement offered by nanoparticles include nanoparticle size and concentration, as well as the interaction between the nanoparticle surface and polymer matrix. Here, we study the viscoelastic creep of nanocomposite systems comprised of glassy thermoplastic polymers and spherical silica nanoparticles of varying sizes and surface functionalization using a dynamic mechanical analysis (DMA) accelerated testing methodology. Significant differences in the nanoparticle dispersions in these nanocomposites were observed via transmission electron microscopy (TEM) and small-angle X-ray scattering (SAXS) and are attributed to differences in the polymer-polymer and polymer-particle interaction strengths. The DMA measurements indicate a decrease in compliance at short times with increased nanoparticle loading that is largely independent of nanoparticle dispersion morphology and polymer-particle interaction strength. Conversely, long term creep behavior shows a much stronger dependence on these parameters with the creep onset time increasing by up to three orders of magnitude. For similar nanoparticle loadings, the time to critical deformation in systems with well-distributed, networked nanoparticle morphologies was larger by an order of magnitude compared to systems exhibiting strong nanoparticle aggregation. The networked systems delayed the time to critical deformation by three orders of magnitude over that of neat polymer. The increase in time to critical deformation is also greater in composites with smaller nanoparticles at similar loadings, which we attribute to the development of percolated nanoparticle networks. These results demonstrate the significant effects polymer-particle interactions and dispersion morphologies can have on the long-term creep compliance of thermoplastic nanocomposites.Two new isomorphic selenite bromides, namely Pb2GaF2(SeO3)2Br (1) and Pb2NbO2(SeO3)2Br (2), were synthesized by mild hydrothermal reactions. These two compounds crystallize in the noncentrosymmertric space group P21 and feature 3D structures consisting of 1D (Pb2Br)3+ cationic chains and 2D [Ga2F4(SeO3)4]6-/[Nb2O4(SeO3)4]6- anonic chains. As measured, 1 and 2 are phase-matchable and exhibit excellent second harmonic generation (SHG) responses of 4.5 and 1.4 times that of KDP, respectively. Moreover, these two compounds possess wide bandgaps (>3.17 eV) and high thermal stabilities (>425 °C), indicating their suitable performances as potential nonlinear optical materials. First-principle density functional theory (DFT) calculations were also performed to explicate the structure-property relationship.Chlorophyll (Chl) pigments are responsible for vital mechanisms in photosynthetic proteins light harvesting, energy transfer and charge separation. A complex interplay between the Chl molecule and its microenvironment determines its transition energy. Interactions such as excitonic coupling with one or more pigments (Chls or carotenoids), axial ligation to the magnesium center, or electrostatic interactions between Chl and nearby amino-acid residues all influence the photophysical properties. Here we use time-resolved photodissociation action spectroscopy to determine transition energies of Chla/b complexes in vacuo to directly compare the impact of a negatively charged axial ligand (formate) to that of exciton coupling between two Chls. Experiments carried out at the electrostatic ion storage ring ELISA allow dissociation to be sampled on hundreds of milliseconds time scale. Absorption-band maxima of Chla-formate complexes are found at 433 ± 4 nm/2.86 ± 0.03 eV (Soret band) and in the region 654-675 nm/1.84-1.90 eV (Q band) and those of Chla dimers tagged by a quaternary ammonium ion at 419 ± 5 nm/2.96 ± 0.04 eV (Soret band) and 647 nm/1.92 eV (Q band). The axial ligand strongly affects the Chla transition energies causing redshifts of 0.21 eV of the Soret band and 0.04-0.1 eV of the Q band compared to Chla tagged by a quaternary ammonium. Slightly smaller shifts were found in case of Chlb. The redshifts are approximately twice that induced by excitonic coupling between two Chlas, also tagged by a quaternary ammonium ion. Axial ligation brings the absorption by isolated Chls very close to that of photosynthetic proteins.We present the results of quantum wave packet calculations performed to analyze the experimental transition-state spectra for the OH + H2O and OD + D2O reactions based on photodetachment of the H3O2- and D3O2- anions. We used a reduced-dimensionality model in which four normal-mode coordinates were considered for the neutral transition state. High-level ab initio potential energy surfaces were used for both the neutral and anionic states. The calculated spectra were found to be in reasonable agreement with the experimental spectra. https://www.selleckchem.com/screening-libraries.html The present study confirms that the vibrational progression observed experimentally is associated with the antisymmetric motion of the transferred H/D atom. We also found that the O-O stretching motion plays an important role in the transition-state dynamics. The influence of vibrational excitation of the H3O2- and D3O2- anions on the photodetachment spectra was also investigated.