Jatropha curcas L. belongs to Euphorbiaceae family, and it synthesizes flavonoid and diterpene compounds that have showed antioxidant, anti-inflammatory, anticancer, antiviral, antimicrobial, antifungal and insecticide activity. Seeds of this plant accumulate phorbol esters, which are tigliane type diterpenes, reported as toxic and, depending on its concentration, toxic and non-toxic varieties has been identified. The aim of this work was to characterize the chemical profile of the extracts from seeds, leaves and callus of both varieties (toxic and non-toxic) of Jatropha curcas, to verify the presence of important compounds in dedifferentiated cells and consider the possibility of using these cultures for the massive production of metabolites. Callus induction was obtained using NAA (1.5 mg L-1) and BAP (1.5 mg L-1) after 21 d for both varieties. Thin layer chromatography analysis showed differences in compounds accumulation in callus from non-toxic variety throughout the time of culture, diterpenes showed an increase along the time, in contrast with flavonoids which decreased. Based on the results obtained through microQTOF-QII spectrometer it is suggested a higher accumulation of phorbol esters, derived from 12-deoxy-16-hydroxy-phorbol (m/z 365 [M+H]+), in callus of 38 d than those of 14 d culture, from both varieties. Unlike flavonoids accumulation, the MS chromatograms analysis allowed to suggest lower accumulation of flavonoids as the culture time progresses, in callus from both varieties. The presence of six glycosylated flavonoids is also suggested in leaf and callus extracts derived from both varieties (toxic and non-toxic), including apigenin 6-C-α-L-arabinopyranosyl-8-C-β -D-xylopyranoside (m/z 535 [M+H]+), apigenin 4'-O-rhamnoside (m/z 417 [M+H]+), vitexin (m/z 433 [M+H]+), vitexin 4'-O-glucoside-2″-O-rhamnoside (m/z 741 [M+H]+), vicenin-2 (m/z 595 [M+H]+), and vicenin-2,6″-O-glucoside (m/z 757 [M+H]+). The accumulation of plaque causes oral diseases. Dental plaque is formed on teeth surfaces by oral bacterial pathogens, particularly , in the oral cavity. Dextranase is one of the enzymes involved in antiplaque accumulation as it can prevent dental caries by the degradation of dextran, which is a component of plaque biofilm. This led to the idea of creating toothpaste containing dextranase for preventing oral diseases. However, the dextranase enzyme must be stable in the product; therefore, encapsulation is an attractive way to increase the stability of this enzyme. The activity of food-grade fungal dextranase was measured on the basis of increasing ratio of reducing sugar concentration, determined by the reaction with 3, 5-dinitrosalicylic acid reagent. The efficiency of the dextranase enzyme was investigated based on its minimal inhibitory concentration (MIC) against biofilm formation by ATCC 25175. Box-Behnken design (BBD) was used to study the three factors affecting encapsulation pH, calcium chl. This research achieved an alternative health product for oral care by formulating toothpaste with dextranase encapsulated in effective alginate beads to act against cariogenic bacteria, like , by preventing dental plaque. This research achieved an alternative health product for oral care by formulating toothpaste with dextranase encapsulated in effective alginate beads to act against cariogenic bacteria, like S. mutants, by preventing dental plaque. Globally, and in the Cape Floristic Region of South Africa, extreme fires have become more common in recent years. Such fires pose societal and ecological threats and have inter alia been attributed to climate change and modification of fuels due to alien plant invasions. Understanding the flammability of different types of indigenous and invasive alien vegetation is essential to develop fire risk prevention and mitigation strategies. We assessed the flammability of 30 species of indigenous and invasive alien plants commonly occurring in coastal fynbos and thicket shrublands in relation to varying fire weather conditions. Fresh plant shoots were sampled and burnt experimentally across diverse fire weather conditions to measure flammability in relation to fire weather conditions, live fuel moisture, fuel load and vegetation grouping (fynbos, thicket and invasive alien plants). Flammability measures considered were burn intensity, completeness of burn, time-to-ignition, and the likelihood of spontaneous ignut burnt with the highest intensity, potentially due to volatile organic composition. The drying of samples resulted in increases in all measures of flammability that were comparable among vegetation groups. Flammability, and by implication fire risk, should thus not increase disproportionately in one vegetation group compared to another under drought conditions-unless the production of dead fuels is disproportionate among vegetation groups. Thus, we suggest that the deadlive fuel ratio is a potentially useful indicator of flammability of evergreen shrublands and that proxies for this ratio need to be investigated for incorporation into fire danger indices.Impatiens capensis is an annual plant native to eastern North America that is currently spreading across Europe. https://www.selleckchem.com/products/Erlotinib-Hydrochloride.html In Poland, due to this plant's rapid spread in the secondary range and high competitiveness in relation to native species, it is considered a locally invasive species. The microstructure of seeds is an important tool for solving various taxonomic problems and also provides data useful for determining the impact of various environmental factors on the phenotypic variability of species. This issue is particularly important in regard to invasive species which occupy a wide range of habitats in the invaded range. There are few reports on seed size and thus far no descriptions of the seed ultrastructure of I. capensis in the analyzed literature. We present new data on the seed morphology of I. capensis growing in different habitats and conditions in the secondary range of the species. The studied populations differed significantly in each of the investigated traits (seed length, width, circumference, area, roundness, and mass).