The plasticizing performances of the esters DBTAE-C1 and DBTAE-C4 rivaled that of dioctyl phthalate (DOP), suggesting that they have the potential to replace DOP in soft PVC materials.RNA-cleaving DNAzymes are widely applied as sensors for detecting metal ions in environmental samples owing to their high sensitivity and selectivity, but their use for sensing biological metal ions in live cells is challenging because constitutive sensors fail to report the spatiotemporal heterogeneity of biological processes. Photocaged DNAzymes can be activated by light for sensing purposes that need spatial and temporal resolution. Studying complex biological processes requires logic photocontrol, but unfortunately all the literature-reported photocaged DNAzymes working in live cells cannot be selectively controlled by light irradiation at different wavelengths. In this work, we developed photocaged DNAzymes responsive to UV and visible light using a general synthetic method based on phosphorothioate chemistry. Taking the Zn2+-dependent DNAzyme sensor as a model, we achieved wavelength-selective activation of photocaged DNAzymes in live human cells by UV and visible light, laying the groundwork for the logic activation of DNAzyme-based sensors in biological systems.SrMnO3 has a rich epitaxial strain-dependent ferroic phase diagram, in which a variety of magnetic orderings, even ferroelectricity, and thus multiferroicity, are accessible by gradually modifying the strain. Different relaxation processes, though, including the presence of strain-induced oxygen vacancies, can severely curtail the possibility of stabilizing these ferroic phases. Here, we report on a thorough investigation of the strain relaxation mechanisms in SrMnO3 films grown on several substrates imposing varying degrees of strain from slightly compressive (-0.39%) to largely tensile ≈+3.8%. First, we determine the strain dependency of the critical thickness (t c) below which pseudomorphic growth is obtained. Second, the mechanisms of stress relaxation are elucidated, revealing that misfit dislocations and stacking faults accommodate the strain above t c. https://www.selleckchem.com/products/atn-161.html Yet, even for films thicker than t c, the atomic monolayers below t c are proved to remain fully coherent. Therefore, multiferroicity may also emerge even in films that appear to be partially relaxed. Last, we demonstrate that fully coherent films with the same thickness present a lower oxygen content for increasing tensile mismatch with the substrate. This behavior proves the coupling between the formation of oxygen vacancies and epitaxial strain, in agreement with first-principles calculations, enabling the strain control of the Mn3+/Mn4+ ratio, which strongly affects the magnetic and electrical properties. However, the presence of oxygen vacancies/Mn3+ cations reduces the effective epitaxial strain in the SrMnO3 films and, thus, the accessibility to the strain-induced multiferroic phase.The article presents the results of a study of thiophene oxidation in high-density C4H4S/O2 mixtures (ρThi = 0.12 and 0.15 mol/dm3, ρO2 = 0.74-1.26 mol/dm3), diluted with water vapor and argon (dilution level x D = 35-65% mol), at uniform heating (1 K/min) of a stainless-steel tubular reactor up to 823 K. It is established that the temperature of thiophene oxidation onset weakly depends on the nature of the diluent and the oxygen content in the reaction mixture. From the time dependences of the reaction mixtures on temperature and pressure, it follows that the oxidation of thiophene in the water vapor and argon media proceeds according to the mechanisms of homogeneous and heterogeneous reactions. Upon oxidation of thiophene in the stoichiometric mixtures in argon with a small amount of water vapor, as well as in the lean mixtures in water vapor, the contribution of reactions on the surface of the Pt-Rh/Pt thermocouple, inserted into the center of the reaction volume, is increased. Upon oxidation of thiophene in water vapor in the fuel-enriched and stoichiometric mixtures, reactions on the oxidized surface of the reactor wall (primarily iron oxides) prevail. Increasing the density of water vapor both reduces the contribution of heterogeneous reactions on the reactor wall and prevents complete carbon burnout. It is shown that the neutralization of sulfuric acid, resulting from the oxidation of thiophene, with calcium carbonate reduces the corrosion of stainless steel. The X-ray diffraction analysis revealed the presence of ferrochromite, iron and chromium oxides, iron, nickel, and chromium sulfates in the corrosion products.On the basis of density functional theory calculations, we explored the catalytic properties of various heteroatom-doped black and gray arsenene toward the oxygen reduction reaction (ORR), the oxygen evolution reaction (OER), and the hydrogen evolution reaction (HER). The calculation results show that pristine black (b-As) and gray arsenene (g-As) exhibit poor catalytic performance because of too weak intermediate adsorption. Heteroatom doping plays a key role in optimizing catalytic performance. Among the candidate dopants O, C, P, S, and Sb, O is the most promising one used in arsenene to improve the ORR and OER catalytic performance. Embedding O atoms could widely tune the binding strength of reactive intermediates and improve the catalytic activity. Single O-doped g-AsO 1 can achieve efficient bifunctional activity for both the OER and the ORR with optimal potential gap. b-AsO 1 and b-AsO 2 exhibit the optimal OER and ORR catalytic performance, respectively. For the HER, double C-doped g-AsC 2 could tune the adsorption of hydrogen to an optimal value and significantly enhance the catalytic performance. These findings indicate that arsenene could provide a new platform to explore high-efficiency electrocatalysts.Ionic liquids (ILs) have been regarded as "designer solvents" because of their satisfactory physicochemical properties. The 5% onset decomposition temperature (T d,5%onset) is one of the most conservative but reliable indicators for characterizing the possible fire hazard of engineered ILs. This study is devoted to develop a quantitative structure-property relationship model for predicting the T d,5%onset of binary imidazolium IL mixtures. Both in silico design and data analysis descriptors and norm index were employed to encode the structural characteristics of binary IL mixtures. The subset of optimal descriptors was screened by combining the genetic algorithm with the multiple linear regression method. The resulting optimal prediction model was a four-variable multiple linear equation, with the average absolute error (AAE) for the external test set being 12.673 K. The results of rigorous model validations also demonstrated satisfactory model robustness and predictivity. The present study would provide a new reliable approach for predicting the thermal stability of binary IL mixtures.