https://www.selleckchem.com/products/arry-382.html Squarylium-based colorimetric hydrogen sulfide (H2S) chemosensors (SQ1, SQ2, and SQ3) were developed, and their detection properties were systematically characterized. SQ1 exhibited rapid and high resolution H2S sensing properties through significant color changes detectable by naked-eye with limit of detection as low as 7.2 ppb. SQ1 also showed excellent selectivity for H2S detection over other relevant anions and nucleophiles. Sensing mechanisms of SQ1 were investigated based on spectroscopic and 1H NMR analyses with quantum calculations. Furthermore, SQ1 showed an efficient response to H2S under versatile conditions in the solution, solid, and dyed fabric states, which suggests applicability of SQ1 to simple, low-cost, and practical H2S sensors.In this study, we report a new donor-acceptor (D-A) type stimuli-responsive material, (E)-4-(((9-ethyl-9H-carbazol-2-yl)methylene)amino)benzoic acid (C1), which possesses both aggregation-induced emission (AIE) and intramolecular charge transfer (ICT) natures. It glows green photoluminescence which changes into yellow color in response to mechanical stimuli, and fumigation in volatile organic compounds (VOCs) can switch the emission back to the initial state with high reversibility. In addition, the C1 film glows yellow-orange light, but turns into blue emission under continuous fumigation in ethyl acetate vapor. However the vapochromism behaves different when the C1 film is smeared The emission of the smeared film is similar to the unsmeared but changes into cyan color after fumigation. The differences in vapochromism between smeared and unsmeared film can be easily distinguished by naked eyes. As revealed by SEM, the as-prepared film undergoes a morphology change from ill-shaped particles to microspheres in response to organic vapor, while the smeared film with scratched surface changes into dendritic patterns. According to the morphology study, the vapochromic luminesce