03), greater E/E' ratio (p = 0.005) and longer MPI (p  less then  0.001). Gestational age  less then  32 weeks is independently associated with current asthma in adolescence. Children 13-14 years old born very preterm required more respiratory admissions and had poorer diastolic and global function of both ventricles. IUGR is a risk factor for poorer lung function in preterm adolescents, regardless gestational age.Urea is the most common form of nitrogenous fertiliser. Recently, research has focused on the development of delivery systems to prolong fertiliser release and prevent fertiliser loss through leaching and volatilization. This study investigates and compares single- and double-layered hollow nanofibrous yarns as novel delivery systems to encapsulate and release urea. Single-layered hollow poly L-lactic acid (PLLA) nanofibre yarns loaded with urea fertiliser were fabricated using a customized electrospinning. Double-layered hollow nanofibre yarns were produced by electrospinning polyhydroxybutyrate (PHB) nanofibres as an outer layer, with urea-impregnated PLLA nanofibres as the inner layer. Scanning electron microscopy (SEM) with an energy-dispersive spectroscopy (EDS) was used to characterize the morphology of hollow electrospun nanofibre yarns. A total nitrogen instrument (TNM-1) was used to study the urea release from single- and double-layered hollow nanofibres yarn in water. A CarbonNitrogen (CN) elemental analyser determined encapsulated nitrogen in PLLA nanofibres samples. Results indicated that urea-impregnated double-layered hollow nanofibre yarns significantly started nitrogen releasing at much lower amount during first 12 h compared to single-layered hollow nanofibre yarns (P value = 0.000). In conclusion, double-layered hollow nanofibre yarn has potential as an effective alternative to current methods for the slow release of fertilisers and other plant-required chemicals.Aquafeed manufacturers have reduced, but not fully eliminated, fishmeal and fish oil and are seeking cost competitive replacements. We combined two commercially available microalgae, to produce a high-performing fish-free feed for Nile tilapia (Oreochromis niloticus)-the world's second largest group of farmed fish. We substituted protein-rich defatted biomass of Nannochloropsis oculata (leftover after oil extraction for nutraceuticals) for fishmeal and whole cells of docosahexaenoic acid (DHA)-rich Schizochytrium sp. as substitute for fish oil. We found significantly better (p  less then  0.05) growth, weight gain, specific growth rate, and best (but not significantly different) feed conversion ratio using the fish-free feed compared with the reference diet. Fish-free feed also yielded higher (p  less then  0.05) fillet lipid, DHA, and protein content (but not significantly different). Furthermore, fish-free feed had the highest degree of in-vitro protein hydrolysis and protein digestibility. The median economic conversion ratio of the fish-free feed ($0.95/kg tilapia) was less than the reference diet ($1.03/kg tilapia), though the median feed cost ($0.68/kg feed) was slightly greater than that of the reference feed ($0.64/kg feed) (p  less then  0.05). Our work is a step toward eliminating reliance on fishmeal and fish oil with evidence of a cost-competitive microalgae-based tilapia feed that improves growth metrics and the nutritional quality of farmed fish.Marine protected areas (MPAs) are a primary strategy for marine conservation worldwide, having as a common goal the protection of essential habitats to enhance fish population recovery. However, MPAs alone may not be effective because species are not isolated from critical impacts occurring outside their boundaries. We evaluated how protecting critical nursery habitats affect the population of an important fishing target, using a 6-year database to predict juvenile hotspots and estimate population trends of the endemic and endangered parrotfish Scarus trispinosus within a mosaic of MPAs at the Abrolhos Bank, NE Brazil. We found that important nursery habitats are within no-take areas, but both juvenile and adult populations still show a declining trend over time. MPAs failed to ensure population maintenance and recovery likely due to overfishing in adjacent areas and the lack of compliance to management rules within multiple-use and within no-take MPAs. MPAs alone are not enough to protect ecologically important endangered species, but is still one of the only conservation strategies, particularly in developing countries. Our results shed light on the need for a wider adoption of more effective conservation policies in addition to MPAs, both in Brazil and in countries with similar governance contexts.Wild bee decline has been reported worldwide. Some bumblebee species (Bombus spp.) have declined in Europe and North America, and their ranges have shrunk due to climate and land cover changes. In countries with limited historical and current occurrence data, it is often difficult to investigate bumblebee range shifts. Here we estimated the past/present distributions of six major bumblebee species in Japan with species distribution modeling using current occurrence data and past/present climate and land cover data. The differences identified between estimated past and present distributions indicate possible range shifts. The estimated ranges of B. diversus, B. hypocrita, B. ignitus, B. honshuensis, and B. https://www.selleckchem.com/products/Gefitinib.html beaticola shrank over the past 26 years, but that of B. ardens expanded. The lower altitudinal limits of the estimated ranges became higher as temperature increased. When focusing on the effects of land cover change, the estimated range of B. diversus slightly shrank due to an increase in forest area. Such increase in forest area may result from the abandonment of agricultural lands and the extension of the rotation time of planted coniferous forests and secondary forests. Managing old planted coniferous forests and secondary forests will be key to bumblebee conservation for adaptation to climate change.Reducing macrophage recruitment by silencing chemokine (C-C motif) receptor 2 (CCR2) expression is a promising therapeutic approach against atherosclerosis. However the transfection of macrophages with siRNA is often technically challenging. EGFP-EGF1-conjugated poly (lactic-co-glycolic acid) (PLGA) nanoparticles (ENPs) have a specific affinity to tissue factor (TF). In this study, the feasibility of ENPs as a carrier for target delivery of CCR2-shRNA to atherosclerotic cellular models of macrophages was investigated. Coumarin-6 loaded ENPs were synthesized using a double-emulsion method. Fluorescence microscopy and flow cytometry assay were taken to examine the uptake of Coumarin-6 loaded ENPs in the cellular model. Then a sequence of shRNA specific to CCR2 mRNA was constructed and encapsulated into ENPs. Target delivery of CCR2-shRNA to atherosclerotic cellular models of macrophages in vitro were evaluated. Results showed more uptake of ENPs by the cellular model than common PLGA nanoparticles. CCR2-shRNA loaded ENPs effectively silenced CCR2 gene in the atherosclerotic macrophages and exhibited a favorable cytotoxic profile to cultured cells.