https://www.selleckchem.com/products/gf109203x.html Knockdown of the five representative commonly overexpressed genes via ingestion RNA interference increased mortalities to all the three test insecticides, supporting their common role in tolerance induction. In contrast, three C2H2-type zinc finger-containing proteins were significantly down-regulated in all insecticide-treated thrip groups. Since the tested insecticides have distinct structures and modes of action, the roles of commonly expressed genes in tolerance were discussed.Bemisia tabaci, sweetpotato whitefly, is one notorious insect pest on a series of crops worldwide, and many populations show high resistance to various insecticides. The cyantraniliprole-resistant strain of B. tabaci SX-R (138.4-fold) was obtained by selections with an outdoor-collected cyantraniliprole resistant population. By crossing and repeated backcrossing to a susceptible MED-S strain, the trait of cyantraniliprole resistance from SX-R was moved into MED-S to establish one near-isogenic line (CYAN-R). MED-S and CYAN-R were utilized to build patterns of cross-resistance, CYAN-R strain exhibited 63.317-fold resistance to cyantraniliprole, but no cross-resistance to several other successfully commercialized chemical agents. After that significant inhibition of cyantraniliprole resistance by piperonyl butoxide (PBO) and increased cytochrome P450 (3.4-fold) were observed in CYAN-R strain, indicating putative involvement of P450 in detoxification. Furthermore, five published detoxification-related P450 genes in B. tabaci, CYP4C64, CYP6CM1, CYP6CX1, CYP6CX4, and CYP6DZ7 were selected and expression levels of them were measured for exploring mechanisms of cyantraniliprole resistance. Compare with MED-S, no significant overexpression of the five P450 genes was observed in the CYAN-R strain. Above results could be conductive to study on mechanism of cyantraniliprole resistance and will be very helpful for the management of whitefly.Apigenin,