https://www.selleckchem.com/products/bay-1000394.html able manner.OBJECTIVE Selective dorsal rhizotomy (SDR) is effective at permanently reducing spasticity in children with spastic cerebral palsy. The value of intraoperative neurophysiological monitoring in this procedure remains controversial, and its robustness has been questioned. This study describes the authors' institutional electrophysiological technique (based on the technique of Park et al.), intraoperative findings, robustness, value to the procedure, and occurrence of new motor or sphincter deficits. METHODS The authors analyzed electrophysiological data of all children who underwent SDR at their center between September 2013 and February 2019. All patients underwent bilateral SDR through a single-level laminotomy at the conus and with transection of about 60% of the L2-S2 afferent rootlets (guided by intraoperative electrophysiology) and about 50% of L1 afferent roots (nonselectively). RESULTS One hundred forty-five patients underwent SDR (64% male, mean age 6 years and 7 months, range 2 years and 9 months to 1y. CONCLUSIONS This electrophysiological technique appears robust and reproducible, allowing reliable identification of afferent nerve roots, definition of root levels, and guidance for rootlet division. Only a direct comparative study will establish whether intraoperative electrophysiology during SDR minimizes risk of new motor or sphincter worsening and/or maximizes functional outcome.Degenerative spondylotic myelopathy is the most common cause of spinal dysfunction, as well as nontraumatic spastic paraparesis and quadriparesis. Although conventional MRI is the gold standard for radiographic evaluation of the spinal cord, it has limited application for determining prognosis and recovery. In the last decade, diffusion tensor imaging (DTI), which is based on the property of preferential diffusion of water molecules, has gained popularity in evaluating patients with cervical spondylotic myelopathy