https://www.selleckchem.com/products/cx-5461.html Hepatic de novo lipogenesis is a major contributor to nonalcoholic fatty liver disease (NAFLD). In this issue of the JCI, Liu and Lin et al. identified Slug as an epigenetic regulator of lipogenesis. Their findings suggest that Slug is stabilized by insulin signaling, and that it promotes lipogenesis by recruiting the histone demethylase Lsd1 to the fatty acid synthase gene promoter. On the other hand, genetic deletion or acute depletion of Slug, or Lsd1 inhibition, reduced lipogenesis and protected against obesity-associated NAFLD and insulin resistance in mice. This study advances our understanding of how lipogenesis is regulated downstream of insulin signaling in health and disease.Herpesviruses infect virtually all humans and establish lifelong latency and reactivate to infect other humans. Latency requires multiple functions maintaining the herpesvirus genome in the nuclei of cells; partitioning the viral genome to daughter cells in dividing cells; avoiding recognition by the immune system by limiting protein expression; producing noncoding viral RNAs (including microRNAs) to suppress lytic gene expression or regulate cellular protein expression that could otherwise eliminate virus-infected cells; modulating the epigenetic state of the viral genome to regulate viral gene expression; and reactivating to infect other hosts. Licensed antivirals inhibit virus replication, but do not affect latency. Understanding of the mechanisms of latency is leading to novel approaches to destroy latently infected cells or inhibit reactivation from latency.Patients with respiratory syncytial virus (RSV) infection exhibit enhanced susceptibility to subsequent pneumococcal infections. However, the underlying mechanisms involved in this increased susceptibility remain unclear. Here, we identified potentially novel cellular and molecular cascades triggered by RSV infection to exacerbate secondary pneumococcal pneumonia. RSV infection