A new method for qualitative and quantitative analysis of Rhodobryum giganteum by using the nonlinear oscillating chemical was established for improving the quality control standard of R. https://www.selleckchem.com/products/bindarit.html giganteum. Its potential(E)/time(t) curve was recorded by electrochemical workstation in the oscillation reaction system of BrO~-_3-Ce(SO_4)_2-H_2SO_4-malonic acid/tartaric acid. The nonlinear oscillating chemical fingerprints were investigated for repeatability, and it was found that the RSD values of the four characteristic parameters of R. giganteum were less than 4.1%, indicating a good repeatability and high precision of this experiment. After optimizing the experimental parameters such as particle size, rotation speed and temperature, a new method based on nonlinear oscillating chemical was used for qualitative and quantitative analysis of R. giganteum. The results showed that there was a good linear relationship between the induction time/the period of oscillation and the dosage of herbs(0.1-1.1 g), with the relative coefficients of 0.978 and 0.975, respectively. Besides, the highest potential showed a nonlinear relationship with the dosage of herbs, with the relative coefficient of 0.999. This method was also used to discriminate the R. giganteum and R. roseum. They were similar in appearance, but their fingerprints were quite different. Independent sample t test results showed that there were significant differences in the oscillation time, the maximum amplitude and the induction time, providing a basis for the identification of the basic sources of Herba Rhodobryi Rasei.In order to clarify the main chemical constituents of Huangdi Anxiao Capsules, an ultra-high performance liquid coupled with quadrupole time-of-flight mass spectrometry(UPLC-Q-TOF-MS~E) combined with Waters UNIFI software were successfully used to rapidly identify the chemical constituents in Huangdi Anxiao Capsules. The mass spectrometry data of chemical constituents from Huangdi Anxiao Capsules were collected by UPLC-Q-TOF-MS~E, and their structures were identified by the results of UNIFI software according to relative retention time of reference standards, MS feature fragments and literature data of each compound. A total of 100 compounds in Huangdi Anxiao Capsules were identified, including 25 compounds from Pueraria Lobate Radix, 22 compounds from Coptis Rhizoma, 6 compounds from Ophiopogonis Radix, 14 compounds from Eriobotryae Folium, 22 compounds from Rehmanniae Radix, and 15 compounds from Notoginseng Radix et Rhizoma. Among them, 3 compounds were common components. These 100 compounds included flavonoids, alkaloids, saponins and organic acids. This study systematically analyzed the chemical composition of Huangdi Anxiao Capsules, so as to provide evidences for defining the chemical material basis of Huangdi Anxiao Capsules.This study was aimed to develop a simple, rapid and reliable method for identifying Armeniacae Semen Amarum from different processed products and various rancidness degrees. The objective odor information of Armeniacae Semen Amarum was obtained by electronic nose. 105 batches of Armeniacae Semen Amarum samples were studied, including three processed products of Armeniacae Semen Amarum, fried Armeniacae Semen Amarum and peeled Armeniacae Semen Amarum, as well as the samples with various rancidness degrees without rancidness, slight rancidness, and rancidness. The discriminant models of different processed products and rancidness degrees of Armeniacae Semen Amarum were established by Support Vector Machine(SVM), respectively, and the models were verified based on back estimation of blind samples. The results showed that there were differences in the characteristic response radar patterns of the sensor array of different processed products and the samples with different rancidness degrees. The initial identification rate was 95.90% and 92.45%, whilst validation recognition rate was 95.38% and 91.08% in SVM identification models. In conclusion, differentiation in odor of different processed and rancidness degree Armeniacae Semen Amarum was performed by the electronic nose technology, and different processed and rancidness degrees Armeniacae Semen Amarum were successfully discriminated by combining with SVM. This research provides ideas and methods for objective identification of odor of traditional Chinese medicine, conducive to the inheritance and development of traditional experience in odor identification.The chromaticity space parameters of the samples during the processing of Gardeniae Fructus Praeparatus(Jiaozhizi in Chinese herbal name, JZZ) were measured by the visual analyzer to analyze the color variation rule during the processing of JZZ, and the content changes of total reducing sugar, total amino acid and 5-hydroxymethylfurfural(5-HMF) related to Maillard reaction were measured. Pearson correlation analysis and linear regression analysis of the data were carried out by SPSS 24.0 software. The experimental results showed that the objective coloration of the samples in the processing of JZZ was basically consistent with the traditional subjective color judgment; the contents of total reducing sugar and total amino acids showed a decreasing trend during the processing of JZZ, and the content of 5-HMF showed an increasing trend, which was in line with Maillard reaction law. Pearson correlation analysis results showed that there was a significant correlation between the chromaticity space parameters L~*(lightness value), a~*(red green value), b~*(yellow blue value), E~*ab(total color value) and the contents of total reducing sugar, total amino acid and 5-HMF(P less then 0.01), among which the values of L~*, a~*, b~*, E~*ab were positively correlated with the contents of total reducing sugar and total amino acid, and negatively correlated with the contents of 5-HMF. The results of linear regression analysis also showed that these two were highly correlated. In this study, by establishing the correspondence relationship between the color change of JZZ processing and Maillard reactants, wecan not only provide a basis for the objective digital expression of subjective color of JZZ, but also provide a reference for explaining the processing mechanism of JZZ from a new perspective.