https://www.selleckchem.com/products/disodium-Cromoglycate.html Encountering suitable hosts is key for parasite success. A general assumption for disease transmission is that the contact of a parasite with a potential host is driven by the density or relative frequency of hosts. That assumption ignores the potential role of differential host attractiveness for parasites that can drive the encounter of hosts. It has been posited that hosts may be chosen by parasites as a function of their suitability, but the existing literature addressing that hypothesis is still very scarce. In a natural system involving a parasitic Philornis botfly and its multiple bird hosts, there are profound differences in host quality. The Great Kiskadee tolerates and does not invest in resisting the infection, which makes it an optimal host. Alternative hosts are frequently used, but whilst some of them may be good options, others are bad alternatives. Here we examined the host selection processes that drive parasite dynamics in this system with 8 years of data from a longitudinal study under natuions in the richness of hosts might cause humans, domestic animals, or endangered species to become increasingly targeted by parasites that can drive the encounter of hosts.Schistosomiasis is a disease of global importance caused by parasitic flatworms, schistosomes, which cause pathogenicity through eggs laid by the female worm inside the host's blood vessels. Maintenance of cellular homeostasis is crucial for parasites, as for other organisms, and is quite likely important for schistosome reproduction and vitality. We hypothesize a role for autophagy in these processes, an evolutionarily conserved and essential cellular degradation pathway. Here, for the first known time, we shed light on the autophagy machinery and its involvement in pairing-dependent processes, vitality and reproduction of Schistosoma mansoni. We identified autophagy genes by in silico analyses and determined the influence of in