https://www.selleckchem.com/products/AZD1152-HQPA.html The measurement of radiotracers is recognized as a major tool for the investigation and characterization of submarine groundwater discharges, while the use of underwater gamma-ray spectrometry has been proved a robust solution for the qualitative and quantitative determination of radionuclides in the aquatic environment. The capability of online continuous monitoring of submarine springs by means of gamma-ray spectrometry for direct estimation of SGD velocity and discharge is presented. The quantification of SGD flux rate is based on radon progenies time-series provided by two spectrometers placed above the seabed and near the water surface respectively, coupled with water level and meteorological data. The proposed methodology has been applied for a 5-month period in a coastal karstic system where multiple submarine springs occur at Anavalos-Kiveri, Greece. The estimated flux rates derived from the measured activities revealed significant SGD temporal variations with the mean discharge of 12 m3 s-1 being compatible with previous measurements. The advantages and limitations of direct SGD estimation via underwater gamma-ray monitoring are also discussed. A total of 456 nuclear tests were performed from 1949 to 1989 at the Semipalatinsk Test Site (STS) in Kazakhstan, as part of the nuclear weapon test program of the USSR. To identify if radionuclides such as 137Cs, 90Sr, 241Am, 239+240Pu were associated with radioactive particles, soil samples were collected at selected contaminated sites (i.e. Experimental field, Excavation sites, Fallout plume sections, Background global fallout area, and Degelen Mountain) within the STS. A series of techniques have been applied to identify the size distributions of radionuclides, the prevalence of radioactive particles in soils, and the degree of leachability of particle associated radionuclides by different agents. In addition, selected particles were characterized non-destruc