e supramolecular photocatalyst on the surface of the Al2O3 particles more than 10 times higher turnover number and about 3.4 times higher turnover frequency of CO formation. These investigations provide new architectures for the construction of efficient and durable hybrid photocatalytic systems for CO2 reduction, which are composed of metal-complex photocatalysts and solid materials.Nucleic acid transfer has shown significant potential in the treatment of bone damage because of its long lasting local effect and lower cost. Nonviral vectors, such as nanomaterials, with higher biocompatibility are increasedly applied in the study of bone defect repair. Carbon dots with various reactive groups on the surface not only provide a unique surface to carry therapeutic genes, but also some carbon dots have been reported to promote osteogenic differentiation. The bone regeneration effect of carbon dots in vivo, however, is rarely investigated. MiR-2861 has revealed osteogenic differentiation effects. https://www.selleckchem.com/products/npd4928.html In the current study, we created ascorbic acid-PEI carbon dots (CD), which were able to carry miR-2861, by the microwave-assisted pyrolysis method. Results demonstrated that CD had excellent fluorescence stability leading to good fluorescence imaging in vitro and in vivo. CD was efficiently internalized into bone marrow stromal cells (BMSCs) through the clathrin-mediated endocytosis pathway and distributed in the mitochondria, endoplasmic reticulum, lysosome, and nucleus. Results from alkaline phosphatase staining, alizarin red staining, and reverse transcription real-time PCR (RT-QPCR) showed that our CD indeed had osteogenic effects in vitro. Flow cytometry data indicated that CD could efficiently deliver miR-2861 into BMSCs in vitro, and CD carrying miR-2861 (CD@miR) had the strongest osteogenic effects. Analyses of hematology, serum biochemistry, and histology showed that CD and CD@miR did not have cytotoxicity and had higher biocompatibility in vivo. Most interestingly, CD and miR-2861 in the CD@miR could act synergistically to promote osteogenic differentiation in vitro and new bone regeneration in vivo remarkably. Our results clearly indicate that the osteogenic CD delivering osteogenic therapeutic gene, miR-2861, can obtain much stronger bone regeneration ability, suggesting that our CD has great potential in future clinical application.The group of per- and polyfluoroalkyl substances (PFAS) comprises thousands of chemicals, which are used in various industrial applications and consumer products. In this study, a feeding experiment with laying hens and feed grown on a contamination site was conducted, and PFAS were analyzed in the feed and eggs to assess the transfer of PFAS into eggs. A targeted analysis of perfluoroalkyl acids (PFAAs) and different sulfonamides was performed. Additionally, the total oxidizable precursor (TOP) assay was modified by fully oxidizing small amounts of the samples instead of oxidizing their extracts in order to overcome potential losses during extraction. Targeted analysis showed the presence of known PFAAs and four sulfonamides in the feed and egg yolk samples. In the plant-based feed, short-chain PFAAs, methyl and ethyl perfluorooctane sulfonamidoacetic acid (Me- and EtFOSAA), and perfluorooctane sulfonic acid (PFOS) were the most abundant PFAS. In the eggs, PFOS, FOSAA, and its alkylated homologues showed the highest concentrations. The TOP assay revealed the presence of substantial amounts of precursors with different chain lengths from C4 to C8. The highest relative increase of PFOA after oxidation was observed in egg yolk from the end of the exposure period (828%). The results of this study demonstrate the transfer of PFAAs and their precursors into hens' eggs and emphasize the contribution of (known and unidentified) precursors to the overall PFAS burden in edible products. The modified TOP assay approach was shown to be a powerful tool to better assess the total burden of samples with PFAS.Enhanced near-infrared (NIR) luminescence from two structurally related heterobinuclear NaIYbIII eight-cooridnate and heterobinuclear YbIIINaI eight-coordinate (CN = 8) complexes is reported and compared to a nine-coordinate (CN = 9) homoleptic complex. For the heteroleptic complex, [Yb(MPQ2)(acac)], the YbIII cation is coordinated to two tridentate 2-(5-methylpyridin-2-yl)-8-quinolinate (MPQ) anions, with a bidentate acetylacetonate (acac) anion completing the coordination sphere. Instead, the heterobinuclear [NaYb(MPQ)4] complex comprises a total of four anionic MPQ ligands, two of which exhibit κ3-coordination to the YbIII cation. The remaining two MPQ anions are unidentate toward the lanthanide and form μ2-bridges via the deprotonated quinolinate oxygens to a bound NaI cation which is also coordinated to the remaining nitrogen donor atoms. The structural properties of these complexes were evaluated by single-crystal X-ray diffraction (SXRD), continuous shape measure (CShM) analysis, and 1H NMR spectroscoponic energy transfer (Φeet) processes involved in the antennae effect have been quantified for the new complexes using a combination of nanosecond and femtosecond transient absorption techniques and have been compared to our previous results using [Ln(MPQ)3] complexes with Ln = Yb and Lu.The ilmenite-type MgMnO3 and ZnMnO3 with honeycomb Mn layers exhibit distinctive magnetic ground states. In experiments, MgMnO3 exhibits a Néel antiferromagnetic alignment, in which both nearest-neighbor (NN) J1 and next-nearest-neighbor (NNN) J2 exchange interactions are antiferromagnetic, while ZnMnO3 has zigzag antiferromagnetic ordering with NN ferromagnetic and NNN antiferromagnetic coupling. On the basis of ab initio band structure calculations, we explain the deviation of NN J1 exchange coupling from antiferromagnetic (MgMnO3) to ferromagnetic (ZnMnO3) as originating from the intensive hybridization between the occupied Zn 3d10 orbitals with those of the bridging O 2p states, strongly depending on the position of the orbitals. In addition, our results indicate that, in combination with the NN J1 coupling, the considerably large third-nearest-neighbor (TNN) J3 exchange interaction plays an important role in erecting the magnetic ground states, rather than the experimentally proposed NNN J2. Furthermore, our findings highlight the important role of not only the electronic configurations but also the positions of the nonmagnetic cations in determining the essence of the magnetic exchange interactions.