Polyvinyl-pyrrolidone capped spherical cadmium sulphide quantum dots (CdS-PVP QDs), 2-6 nm in size, were developed as a selective turn-on fluorescence nanosensor for monohydrogen phosphate ion (HPO42-) in aqueous medium. Fluorescence intensity of CdS-PVP QDs significantly increased with addition of HPO42- ions, whereas the other common inorganic ions had very little effect on the fluorescence intensity. The proposed sensor may be efficiently used for the detection of HPO42- ions at a low level of concentration up to 213 nM in real urine sample. Cell imaging study indicates that the CdS-PVP QDs are cell permeable and can detect the intracellular distribution of HPO42- ions under fluorescence microscope. The CdS-PVP QDs showed considerable activity against Staphylococcus aureus also. Traditionally, the rice blast is diagnosed with the naked-eyes. There is an urgent need to provide a method that can identify the early rice blast without symptoms. In the paper, a method for the early rice blast diagnosis based on the Raman spectroscopy was proposed. Considering the compositions of the biological sample are complex, characteristic peaks are severely crossed, the biological fluorescence background and the noise are strong, and the Raman signal is weak. Different data pre-processing methods will lead to different diagnostic accuracies of Raman models, especially for biological samples. This paper proposed a method for modeling a Raman model based on data without pre-processing. In this method, the raw data are decomposed with Empirical Mode Decomposition (EMD) into several Intrinsic Mode Functions (IMF). Then, based on the self-correlation coefficient of the IMFs and the times of the IMFs crossing the zero Raman Intensity line, IMFs are filtered to get the signal components. Taking the characteristic peaks of the β-carotene, the chlorophyll, and the chitin as the initial characteristic variables, the characteristic variables of the signal components were screened based on Successive Projections Algorithm (SPA). Finally, the obtained characteristic variables were used to establish a Partial Least Squares (PLS) regression model for the rice blast classification, and the test classification accuracy was 94.12%, which was higher than that of models based on spectral data pre-processed by Moving Average Smoothing + Baseline offset, Savitzky Golay Smoothing + Baseline offset, Gaussian Filter Smoothing + Baseline offset and the dB5 wavelet, 3-layer decomposition, Stein Unbiased Risk Estimate, the modulus maximum value method +7 points, 3rd-order Polynomial Fitting. We are reporting a simple, easy to prepare, and conformation switchable first molecular phototropic system L, "(E)-2-(2,4-dinitrophenyl)-1-((pyren-8-yl)methylene)hydrazine, for cyanide harvesting. This molecular phototropic system behaves as a molecular sunflower in which the conformation of this molecular sunflower can be altered in response to the sunlight. This molecular flower can sense and bind the cyanide anion colorimetrically through its transition state. Further, upon exposure of this transition state cyanide complex 1, under sunlight, this system is capable to release the bound cyanide via -C=N- free rotation to reach its lower energy stable conformation. Similar behaviors were observed for acetate and fluoride with L. The strength of the phototropic system L towards cyanide, acetate and fluoride is found to be 4.5 × 105, 1.53 × 102 and 6.09 × 102 M-1. The conversion of N,N'-disubstituted hydrazone derivatives of 5-nitrobenzimidazole-2-thione into radical anion and dianion products was studied through infrared (IR) spectroscopy and computational methods. The electrochemical reduction of 3,3'-(5-nitro-2-thioxo-1H-benzo[d]imidazole-1,3(2H)-diyl)bis(N'-(2-methoxybenzylidene))propane-hydrazide was performed directly in the IR cell and the spectral changes were monitored over time in order to identify the spectral bands originating from the reduction product. https://www.selleckchem.com/products/sovilnesib.html In order to clarify whether the reduction leads to the generation of radical anion or deprotonated radical dianion, a second spectroscopic experiment was carried out where deprotonation was achieved by treatment with sodium methoxide. Both experiments resulted in distinctly different spectral features, giving evidence that the reduction to radical anion is not accompanied by deprotonation. In order to explain the experimentally observed differences in the hepatotoxicity within the series of N,N'-disubstituted derivatives of 5-nitrobenzimidazole-2-thione, several molecular electronic parameters such as frontier molecular orbitals, spin and charge distribution over fragments, and electron affinities of the studied hydrazone derivatives were compared to those of a previously studied ester derivative. Based on the estimated electronic parameters, it was shown that the type of the side chains (ester, hydrazone etc.) attached to the N-atoms in the nitrobenzimidazole derivatives do not change significantly the propensity of the compounds towards nitro reduction, but however the generated radical anions are characterized by different reactivity accounting for the different hepatotoxicity. BACKGROUND More than 80% of advanced prostate cancer (PCa) cases have bone metastasis, with a 5-year survival rate of 25%. Previously, we reported that GRT, a standardized, pharmaceutical-grade aspalathin-rich extract (12.78 g aspalathin/100 g extract), prepared from green rooibos produced from the leaves and fine stems of Aspalathus linearis, inhibits the proliferation of PCa cells, meriting this investigation to determine if GRT can suppress the migration and invasion of castration-resistant prostate cancer (CRPC) cells. PURPOSE In the present study, we investigated whether GRT extract can interfere with the migration and invasion of human CRPC cells. METHODS Transwell assays were used to explore the effects of GRT on the migration and invasion of CRPC cells. Micro-Western Array (MWA) and Western blot analysis were carried out to unravel the underlying molecular mechanism(s). RESULTS Treatment with 25-100 μg/ml GRT suppressed the migration and invasion of LNCaP C4-2B and 22Rv1 CRPC cells. MWA and Western blot analysis indicated that GRT treatment suppressed the protein level of yes-associated protein (YAP), macrophage stimulating 1 protein (MST1), phospho-MST1/phospho-MST2 T183/T180, and paxillin, but increased the abundance of E-cadherin.