https://www.selleckchem.com/PI3K.html The test performed by HCPs during implementation showed 100.0% (4/4) sensitivity and 68.1% (62/91) specificity in identifying G6PD deficient patients as compared to a point-of-care quantitative test (Standard G6PD). G6PD screening using the qualitative CareStart G6PD test performed by HCPs in MTUs of an endemic area showed high sensitivity and concerning low specificity. The amount of false G6PD deficiency detected led to substantial loss of opportunities for radical cure. G6PD screening using the qualitative CareStart G6PD test performed by HCPs in MTUs of an endemic area showed high sensitivity and concerning low specificity. The amount of false G6PD deficiency detected led to substantial loss of opportunities for radical cure. Measurement of end-tidal CO2 (ETCO2) can help to monitor circulation during cardiopulmonary resuscitation (CPR). However, early detection of restoration of spontaneous circulation (ROSC) during CPR using waveform capnography remains a challenge. The aim of the study was to investigate if the assessment of ETCO2 variation during chest compression pauses could allow for ROSC detection. We hypothesized that a decay in ETCO2 during a compression pause indicates no ROSC while a constant or increasing ETCO2 indicates ROSC. We conducted a retrospective analysis of adult out-of-hospital cardiac arrest (OHCA) episodes treated by the advanced life support (ALS). Continuous chest compressions and ventilations were provided manually. Segments of capnography signal during pauses in chest compressions were selected, including at least three ventilations and with durations less than 20 s. Segments were classified as ROSC or non-ROSC according to case chart annotation and examination of the ECG and transthoracic impedanculd help confirm ROSC during compression pauses in ALS settings. Average percent variation of ETCO2 during pauses in chest compressions allowed for ROSC discrimination. This metric could help confirm RO