https://www.selleckchem.com/products/zasocitinib.html It is a crucial challenge to address both magnetic anisotropy and stability for single-molecule magnets (SMMs) used in next-generation nanodevices. Highly axial lanthanide SMMs with neutral charge and moderate coordination numbers represent promising magnetic materials. Here, using iodide ions with large volume and low surface charge density as weak donors, we report a six-coordinate neutral dysprosium SMM [Dy(Cy3PO)2I3(CH3CN)] with a certain degree of stability exhibiting a huge thermal barrier of 1062 K and hysteresis loops open up to 9 K. Through the elaborate reduction of ligand field strength, an apparent strongly axial crystal field is provided which elicits prominent crystal-field splitting and high axiality with the thermally activated relaxation via the third-excited Kramers' doublet. Moreover, the profound influence of strong equatorial ligand substitution on the electronic structure and relaxation pathway is clearly explored in DyIII analogues. The result suggests the great potential of the reducing the transverse ligand field in the improvement of SMMs performance.The mechanism underlying contaminant biomagnification is a decrease in the volume (V) and the fugacity capacity (Z) of food during digestion in the gastrointestinal tract. Traditionally, biomagnification is quantified by measuring contaminant concentrations in animal tissues. Here, we present a proof-of-concept study to noninvasively derive the thermodynamic limit to an organism's biomagnification capability (biomagnification limit -BMFlim) by determining the ratio of the V·Z-products of undigested and digested food. We quantify Z-values by equilibrating food and feces samples, which have been homogenized and spiked with polychlorinated biphenyls (PCBs), with silicone films of variable thickness coated on the inside of glass vials. We demonstrate the feasibility of this method for wolf (Canis lupus hudsonicus) and domestic dog (Canis lupus f