https://www.selleckchem.com/products/Y-27632.html The stability of the commercial lactase enzyme is important for the dairy industry. A destabilizing factor for neutral lactase in the enzyme preparation from Kluyveromyces lactis was investigated. We found that lactase had lower thermal stability when fragmented bands of lactase were confirmed on SDS-PAGE. After the destabilizing factor of lactase was purified, that was identified by BLAST search as a hypothetical protein in K. lactis similar to proteinase B (PRB) of Saccharomyces cerevisiae. The molecular mass of protease was estimated to be approximately 30 kDa with SDS-PAGE. The purified protease exhibited activity toward lactase and FITC-casein but not toward bovine serum albumin or milk casein. The optimal pH and temperature of the protease were 8.0 and 40 °C, respectively. The protease activity was strongly inhibited by Fe2+, Cu2+, and a serine protease inhibitor, but activated by Ca2+. Based on these properties, the protease was identified as PRB. Lactase fragmentation was accelerated by the addition of purified PRB to the lactase preparation and was suppressed by protease inhibitors. Thus, this is the first report to identify and characterize PRB as the unstable factor of neutral lactase in the K. lactis preparation.Bioelectrochemical systems (BESs) are engineered systems that utilize electrochemical interactions between electrochemically active bacteria (EAB) and electrodes. BESs have attracted considerable attention for their utility in biotechnological processes. In a BES, hydrogen is generated by the reduction of water on low-potential cathode electrodes. However, limited information is available on the effect of hydrogen on the metabolism and growth of EAB and current generation in BESs. Here, we investigated the effect of hydrogen on current generation by a model EAB, Shewanella oneidensis MR-1. We found that this strain utilizes hydrogen as an electron donor for electrode respiration, thereby facilitat