https://www.selleckchem.com/products/LBH-589.html Intravenous administration of rAAV-8-shEPHB2 suppressed HCC tumor growth and significantly sensitized HCC cells to sorafenib in an NRAS/AKT-driven HCC immunocompetent mouse model. Targeting a positive feedback loop involving the EPHB2/β-catenin axis may be a possible therapeutic strategy to combat acquired drug resistance in HCC. SIGNIFICANCE This study identifies a EPHB2/β-catenin/TCF1 positive feedback loop that augments cancer stemness and sorafenib resistance in HCC, revealing a targetable axis to combat acquired drug resistance in HCC. GRAPHICAL ABSTRACT http//cancerres.aacrjournals.org/content/canres/81/12/3229/F1.large.jpg.Activating mutations in some isoforms of RAS or RAF are drivers of a substantial proportion of cancers. The main Raf effector, MEK1/2, can be targeted with several highly specific inhibitors. The clinical activity of these inhibitors seems to be mixed, showing efficacy against mutant BRAF-driven tumors but not KRAS-driven tumors, such as pancreatic adenocarcinomas. To improve our understanding of this context-dependent efficacy, we generated pancreatic cancer cells resistant to MEK1/2 inhibition, which were also resistant to KRAS and ERK1/2 inhibitors. Compared with parental cells, inhibitor-resistant cells showed several phenotypic changes including increased metastatic ability in vivo. The transcription factor SLUG, which is known to induce epithelial-to-mesenchymal transition, was identified as the key factor responsible for both resistance to MEK1/2 inhibition and increased metastasis. Slug, but not similar transcription factors, predicted poor prognosis of pancreatic cancer patients and induced the transition to a cellular phenotype in which cell-cycle progression becomes independent of the KRAS-RAF-MEK1/2-ERK1/2 pathway. SLUG was targeted using two independent strategies (i) inhibition of the MEK5-ERK5 pathway, which is responsible for upregulation of SLUG upon MEK1/2 inhibition, and (