https://www.selleckchem.com/products/ipi-145-ink1197.html © 2020 The Authors. Published by Elsevier B.V.Liposomes are an important tool and have gained much attention for their promise as an effective means of delivering small therapeutic compounds to targeted sites. In an effort to establish an effective method to produce liposomes from the lipid, dipalmitoyl-phosphatidylcholine or DPPC, we have found important aspects that must be taken into consideration. Here, we used probe-tip sonication to prepare liposomes on a batch scale. During this process we uncovered interesting steps in their preparation that altered the thermodynamic properties and phase transitions of the resulting liposome mixtures. Using differential scanning calorimetry to assess this we found that increasing the sonication time had the most dramatic effect on our sample, producing almost an entirely separate phase transition relative to the main phase transition. This result is consistent with reports from the current literature. We also highlight a smaller transition, which we attribute to traces of unincorporated lipid that seems to gradually disappear as the total lipid concentration decreases. Overall, sonication is an effective means of producing liposomes, but we cannot assert this method is optimal in producing them with precise physical properties. Here we highlight the physical effects at play during this process. © 2020 The Authors.Background and Aims Tricuspid regurgitation (TR) is a frequent valvular heart disease with relevant adverse impact on patients' prognosis. Adequate TR imaging and evaluation is challenging. In this study, we aimed to compare different imaging modalities (echocardiography and multi-slice computed tomography) for the assessment of tricuspid valve (TV) function and geometry. Methods We retrospectively investigated patients that presented to University Hospital Bonn, Germany, between September 2018 and March 2019, who underwent comprehensive echocardiography and