In contrast, oxytocinergic cells and circulating levels of thyrotropin-releasing hormone remain stable. A relative resistance to many forms of neurodegenerative pathology is also observed, in comparison to other hypothalamic and brain regions. Mirroring the pattern observed in aging, pathologic hallmarks of AD, and some subtypes of FTD are observed in the PVN, though to a milder degree than are observed in other brain regions, while the SON is relatively spared. In contrast, the SON appears more vulnerable to alpha-synuclein pathology of DLB and PD. The consequences of these alterations may help to inform several of the physiologic changes observed in aging and neurodegenerative disease.In the perspective to evaluate the toxicity of drug candidates or the exploration of intracellular signaling pathways of cell stress response and pathophysiological conditions, we propose to evaluate cell death, autophagy, mitochondrial network and energetic metabolism by a series of optimized joint protocols for neonatal primary rat cardiomyocytes or H9c2 cardiac cell line in 96 well microtiter plates. We used Digitoxigenin and Digoxin, two cardiac glycosides, and Rapamycin as control drugs, for inhibition of oxidative stress-induced cell death and autophagy induction, respectively.Autophagy is one of the main adaptive mechanisms to maintain cellular homeostasis in response to multiple stresses. During autophagy diverse cellular components such as damaged organelles or superfluous proteins are targeted for lysosomal degradation. Importantly, during the initiation of autophagy MAP1LC3B (better known as LC3) lipidates into the membrane of the forming phagophore, which facilitates the formation and lengthening of autophagosomes. In addition, the autophagy receptor SQSTM1 (better known as p62) selectively recruits various cargos to autophagosomes for lysosomal degradation. Both, the conversion of LC3 as well as the degradation of p62 can be assessed as means of monitoring autophagy. Here we detail a protocol for assessing these key events of the autophagic flux via immunoblot.Changes in size and abundance of late endocytic and autophagic organelles are increasingly appreciated as highly indicative of the physiological or pathological conditions of cells. Electron microscopy (EM) is unsurpassed in high-resolution imaging of both ultrastructural and immunocytochemical features of subcellular compartments. EM-based morphometry permits precise quantitative analyses of organelles, especially after state-of-the-art cryopreparation. Here described step-by-step protocols cover (i) different approaches for sample preparation of almost any specimen, (ii) tools to identify and characterize classes or subpopulations of lysosomes and related organelles, and (iii) convenient, straightforward ways for manual, thus, non-automated measurements of globular or spheroid-shaped organelles.The activation of autophagy has long been recognized as a central mechanism of healthspan and lifespan regulation at the organismal level, thus spurring major interest in identifying pharmacological or lifestyle interventions able to ignite the autophagic reaction in vivo. Consistently, there is growing need for the implementation in the preclinical practice of an "autophagometer," to be intended as a simple and non-invasive method to measure the autophagic flux in living organisms. Using fasting as the prototypical trigger of autophagy, we describe here a system (based on a leupeptin-based assay and video-flow cytometric detection of LC3B puncta) to quantitate autophagy in circulating leukocytes in mouse. We suggest that this method can be reliably used in the experimental routine to validate the pro-autophagy action of candidate drugs in vivo.Macroautophagy (hereafter referred to as autophagy) serves the liberation of energy resources through the degradation of cellular components and is characterized by the formation of double-membraned vesicles, commonly referred to as autophagosomes. Microtubule-associated proteins 1A/1B light chain 3B (hereafter referred to as LC3) plays a crucial role during autophagosome formation, as cleavage of its immature form and subsequent conjugation to phosphatidylethanolamine facilitates autophagosomal membrane biogenesis. Indeed, the redistribution of green fluorescent protein (GFP)-conjugated LC3 from a diffuse cytosolic pattern into forming autophagosomes constitutes a morphological phenotype (commonly referred to as LC3 puncta) applicable to phenotypic analysis. The quantification of LC3 puncta in end-point assays has extensively been used in the past, allowing for the identification of autophagy modulators. Here, we describe a robust method employing automated confocal live cell imaging for the study of time-resolved LC3 dynamics. Furthermore, this method can be used to differentiate between phenotypes such as the homogeneous distribution of LC3 puncta in the cytoplasm, and the aggregation of LC3 clusters juxtaposed to the nucleus thus allowing for functional predictions.LC3-associated phagocytosis (LAP) uses components of the molecular machinery of macroautophagy and is involved in the presentation of extracellular antigens by Major Histocompatibility Complex (MHC) class II molecules. It is initiated by receptor-mediated phagocytosis and results in the formation of LAPosomes single-membrane vesicles that are decorated with the macroautophagy protein LC3B. LAPosomes have been described to prolong antigen presentation in macrophages but the molecular mechanism of this process is just beginning to be understood. Known key regulators of LAPosome formation are Reactive Oxygen Species (ROS), which can modulate the pH and the oxidative state within LAPosomes. Here, we present two complementary methods to monitor oxidation in LAPosomes and to study its function in MHC class II restricted antigen presentation, both in primary human macrophages (I) Coating the LAP-trigger zymosan with OxyBURST allows semi-quantitative assessment of oxidation levels within LAPosomes by confocal microscopy. https://www.selleckchem.com/products/nms-p937-nms1286937.html (II) The co-culture of macrophages with CD4+T cells to assess the effects of LAP on Candida albicans antigen presentation by measuring IL-17A and IFN-γ secretion.